BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32577518)

  • 1. Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound.
    Russell IJ; Lukashkina VA; Levic S; Cho YW; Lukashkin AN; Ng L; Forrest D
    Sci Adv; 2020 Jun; 6(24):eaba2634. PubMed ID: 32577518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An emilin family extracellular matrix protein identified in the cochlear basilar membrane.
    Amma LL; Goodyear R; Faris JS; Jones I; Ng L; Richardson G; Forrest D
    Mol Cell Neurosci; 2003 Jul; 23(3):460-72. PubMed ID: 12837629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prestin's role in cochlear frequency tuning and transmission of mechanical responses to neural excitation.
    Mellado Lagarde MM; Drexl M; Lukashkin AN; Zuo J; Russell IJ
    Curr Biol; 2008 Feb; 18(3):200-2. PubMed ID: 18221877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorpromazine alters cochlear mechanics and amplification: in vivo evidence for a role of stiffness modulation in the organ of corti.
    Zheng J; Deo N; Zou Y; Grosh K; Nuttall AL
    J Neurophysiol; 2007 Feb; 97(2):994-1004. PubMed ID: 17122316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-domain analysis of a three-dimensional numerical model of the human spiral cochlea at medium intensity.
    Yao W; Zhao Z; Wang J; Duan M
    Comput Biol Med; 2021 Sep; 136():104756. PubMed ID: 34388464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in cochlear physiology.
    Lippe WR
    Ear Hear; 1986 Aug; 7(4):233-9. PubMed ID: 3743914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of the cochlea in the African mole rat (Cryptomys hottentotus): evidence for a low frequency acoustic fovea.
    Müller M; Laube B; Burda H; Bruns V
    J Comp Physiol A; 1992 Nov; 171(4):469-76. PubMed ID: 1469665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinally propagating traveling waves of the mammalian tectorial membrane.
    Ghaffari R; Aranyosi AJ; Freeman DM
    Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16510-5. PubMed ID: 17925447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea.
    Murugasu E; Russell IJ
    J Neurosci; 1996 Jan; 16(1):325-32. PubMed ID: 8613799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products.
    Kössl M; Vater M
    Hear Res; 1996 May; 94(1-2):78-86. PubMed ID: 8789813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band.
    Vater M; Feng AS; Betz M
    J Comp Physiol A; 1985 Nov; 157(5):671-86. PubMed ID: 3837107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla.
    Ruggero MA; Narayan SS; Temchin AN; Recio A
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11744-50. PubMed ID: 11050204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cochlear tuning by low-frequency sound.
    Klis JF; Prijs VF; Latour JB; Smoorenburg GF
    Hear Res; 1988 Nov; 36(2-3):163-73. PubMed ID: 3209489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradients of neurotrophins, ion channels, and tuning in the cochlea.
    Davis RL
    Neuroscientist; 2003 Oct; 9(5):311-6. PubMed ID: 14580116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear partition anatomy and motion in humans differ from the classic view of mammals.
    Raufer S; Guinan JJ; Nakajima HH
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13977-13982. PubMed ID: 31235601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals.
    West CD
    J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular organization and fine structure of the human basilar membrane - RELEVANCE for cochlear implantation.
    Liu W; Atturo F; Aldaya R; Santi P; Cureoglu S; Obwegeser S; Glueckert R; Pfaller K; Schrott-Fischer A; Rask-Andersen H
    Cell Tissue Res; 2015 May; 360(2):245-62. PubMed ID: 25663274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.