These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 32577518)
1. Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound. Russell IJ; Lukashkina VA; Levic S; Cho YW; Lukashkin AN; Ng L; Forrest D Sci Adv; 2020 Jun; 6(24):eaba2634. PubMed ID: 32577518 [TBL] [Abstract][Full Text] [Related]
2. An emilin family extracellular matrix protein identified in the cochlear basilar membrane. Amma LL; Goodyear R; Faris JS; Jones I; Ng L; Richardson G; Forrest D Mol Cell Neurosci; 2003 Jul; 23(3):460-72. PubMed ID: 12837629 [TBL] [Abstract][Full Text] [Related]
3. Prestin's role in cochlear frequency tuning and transmission of mechanical responses to neural excitation. Mellado Lagarde MM; Drexl M; Lukashkin AN; Zuo J; Russell IJ Curr Biol; 2008 Feb; 18(3):200-2. PubMed ID: 18221877 [TBL] [Abstract][Full Text] [Related]
4. Mechanical tuning and amplification within the apex of the guinea pig cochlea. Recio-Spinoso A; Oghalai JS J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742 [TBL] [Abstract][Full Text] [Related]
5. Chlorpromazine alters cochlear mechanics and amplification: in vivo evidence for a role of stiffness modulation in the organ of corti. Zheng J; Deo N; Zou Y; Grosh K; Nuttall AL J Neurophysiol; 2007 Feb; 97(2):994-1004. PubMed ID: 17122316 [TBL] [Abstract][Full Text] [Related]
6. The physics of hearing: fluid mechanics and the active process of the inner ear. Reichenbach T; Hudspeth AJ Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839 [TBL] [Abstract][Full Text] [Related]
7. Time-domain analysis of a three-dimensional numerical model of the human spiral cochlea at medium intensity. Yao W; Zhao Z; Wang J; Duan M Comput Biol Med; 2021 Sep; 136():104756. PubMed ID: 34388464 [TBL] [Abstract][Full Text] [Related]
9. Structure and function of the cochlea in the African mole rat (Cryptomys hottentotus): evidence for a low frequency acoustic fovea. Müller M; Laube B; Burda H; Bruns V J Comp Physiol A; 1992 Nov; 171(4):469-76. PubMed ID: 1469665 [TBL] [Abstract][Full Text] [Related]
10. Longitudinally propagating traveling waves of the mammalian tectorial membrane. Ghaffari R; Aranyosi AJ; Freeman DM Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16510-5. PubMed ID: 17925447 [TBL] [Abstract][Full Text] [Related]
11. The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. Murugasu E; Russell IJ J Neurosci; 1996 Jan; 16(1):325-32. PubMed ID: 8613799 [TBL] [Abstract][Full Text] [Related]
12. Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products. Kössl M; Vater M Hear Res; 1996 May; 94(1-2):78-86. PubMed ID: 8789813 [TBL] [Abstract][Full Text] [Related]
13. An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. Vater M; Feng AS; Betz M J Comp Physiol A; 1985 Nov; 157(5):671-86. PubMed ID: 3837107 [TBL] [Abstract][Full Text] [Related]
14. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. Ruggero MA; Narayan SS; Temchin AN; Recio A Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11744-50. PubMed ID: 11050204 [TBL] [Abstract][Full Text] [Related]
16. Gradients of neurotrophins, ion channels, and tuning in the cochlea. Davis RL Neuroscientist; 2003 Oct; 9(5):311-6. PubMed ID: 14580116 [TBL] [Abstract][Full Text] [Related]
17. Cochlear partition anatomy and motion in humans differ from the classic view of mammals. Raufer S; Guinan JJ; Nakajima HH Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13977-13982. PubMed ID: 31235601 [TBL] [Abstract][Full Text] [Related]
18. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. West CD J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863 [TBL] [Abstract][Full Text] [Related]
19. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion. Nam H; Guinan JJ Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975 [TBL] [Abstract][Full Text] [Related]
20. Stiffness gradient along the basilar membrane as a basis for spatial frequency analysis within the cochlea. Ehret G J Acoust Soc Am; 1978 Dec; 64(6):1723-6. PubMed ID: 739099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]