BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32577518)

  • 21. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stiffness gradient along the basilar membrane as a basis for spatial frequency analysis within the cochlea.
    Ehret G
    J Acoust Soc Am; 1978 Dec; 64(6):1723-6. PubMed ID: 739099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli.
    Stenfelt S; Puria S; Hato N; Goode RL
    Hear Res; 2003 Jul; 181(1-2):131-43. PubMed ID: 12855371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.
    Dewey JB; Applegate BE; Oghalai JS
    J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basilar membrane mechanics at the base of the chinchilla cochlea. II. Responses to low-frequency tones and relationship to microphonics and spike initiation in the VIII nerve.
    Ruggero MA; Robles L; Rich NC
    J Acoust Soc Am; 1986 Nov; 80(5):1375-83. PubMed ID: 3782616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micromechanical responses to tones in the auditory fovea of the greater mustached bat's cochlea.
    Russell IJ; Kössl M
    J Neurophysiol; 1999 Aug; 82(2):676-86. PubMed ID: 10444665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of cochlear mechanics.
    Zwislocki JJ
    Hear Res; 1986; 22():155-69. PubMed ID: 3733537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression.
    Ruggero MA; Robles L; Rich NC
    J Neurophysiol; 1992 Oct; 68(4):1087-99. PubMed ID: 1432070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial distribution of electrically induced high frequency vibration on basilar membrane.
    Hu N; Nuttall AL; Ren T
    Hear Res; 2005 Apr; 202(1-2):35-46. PubMed ID: 15811697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison.
    Yoon YJ; Steele CR; Puria S
    Biophys J; 2011 Jan; 100(1):1-10. PubMed ID: 21190651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanomechanical mapping reveals localized stiffening of the basilar membrane after cochlear implantation.
    Choong JK; Hampson AJ; Brody KM; Lo J; Bester CW; Gummer AW; Reynolds NP; O'Leary SJ
    Hear Res; 2020 Jan; 385():107846. PubMed ID: 31786442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window.
    He W; Porsov E; Kemp D; Nuttall AL; Ren T
    PLoS One; 2012; 7(3):e34356. PubMed ID: 22470560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics.
    Shera CA
    J Acoust Soc Am; 2001 Jul; 110(1):332-48. PubMed ID: 11508959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency-dependent properties of the tectorial membrane facilitate energy transmission and amplification in the cochlea.
    Jones GP; Lukashkina VA; Russell IJ; Elliott SJ; Lukashkin AN
    Biophys J; 2013 Mar; 104(6):1357-66. PubMed ID: 23528095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophysiological Evidence of the Basilar-Membrane Travelling Wave and Frequency Place Coding of Sound in Cochlear Implant Recipients.
    Campbell L; Bester C; Iseli C; Sly D; Dragovic A; Gummer AW; O'Leary S
    Audiol Neurootol; 2017; 22(3):180-189. PubMed ID: 29084395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Basilar membrane velocity noise.
    Nuttall AL; Guo M; Ren T; Dolan DF
    Hear Res; 1997 Dec; 114(1-2):35-42. PubMed ID: 9447916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.