These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 32577518)
21. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Stenfelt S; Puria S; Hato N; Goode RL Hear Res; 2003 Jul; 181(1-2):131-43. PubMed ID: 12855371 [TBL] [Abstract][Full Text] [Related]
22. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces. Dewey JB; Applegate BE; Oghalai JS J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330 [TBL] [Abstract][Full Text] [Related]
23. Basilar membrane mechanics at the base of the chinchilla cochlea. II. Responses to low-frequency tones and relationship to microphonics and spike initiation in the VIII nerve. Ruggero MA; Robles L; Rich NC J Acoust Soc Am; 1986 Nov; 80(5):1375-83. PubMed ID: 3782616 [TBL] [Abstract][Full Text] [Related]
24. Micromechanical responses to tones in the auditory fovea of the greater mustached bat's cochlea. Russell IJ; Kössl M J Neurophysiol; 1999 Aug; 82(2):676-86. PubMed ID: 10444665 [TBL] [Abstract][Full Text] [Related]
25. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning. Raufer S; Verhulst S Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947 [TBL] [Abstract][Full Text] [Related]
27. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Nuttall AL; Ren T Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740 [TBL] [Abstract][Full Text] [Related]
28. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. Ruggero MA; Robles L; Rich NC J Neurophysiol; 1992 Oct; 68(4):1087-99. PubMed ID: 1432070 [TBL] [Abstract][Full Text] [Related]
29. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636 [TBL] [Abstract][Full Text] [Related]
30. Spatial distribution of electrically induced high frequency vibration on basilar membrane. Hu N; Nuttall AL; Ren T Hear Res; 2005 Apr; 202(1-2):35-46. PubMed ID: 15811697 [TBL] [Abstract][Full Text] [Related]
31. Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison. Yoon YJ; Steele CR; Puria S Biophys J; 2011 Jan; 100(1):1-10. PubMed ID: 21190651 [TBL] [Abstract][Full Text] [Related]
33. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. Crawford AC; Fettiplace R J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380 [TBL] [Abstract][Full Text] [Related]
34. The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window. He W; Porsov E; Kemp D; Nuttall AL; Ren T PLoS One; 2012; 7(3):e34356. PubMed ID: 22470560 [TBL] [Abstract][Full Text] [Related]
35. Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. Shera CA J Acoust Soc Am; 2001 Jul; 110(1):332-48. PubMed ID: 11508959 [TBL] [Abstract][Full Text] [Related]
36. Frequency-dependent properties of the tectorial membrane facilitate energy transmission and amplification in the cochlea. Jones GP; Lukashkina VA; Russell IJ; Elliott SJ; Lukashkin AN Biophys J; 2013 Mar; 104(6):1357-66. PubMed ID: 23528095 [TBL] [Abstract][Full Text] [Related]
37. Electrophysiological Evidence of the Basilar-Membrane Travelling Wave and Frequency Place Coding of Sound in Cochlear Implant Recipients. Campbell L; Bester C; Iseli C; Sly D; Dragovic A; Gummer AW; O'Leary S Audiol Neurootol; 2017; 22(3):180-189. PubMed ID: 29084395 [TBL] [Abstract][Full Text] [Related]