These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32578266)
1. Sierra Nevada mountain lake microbial communities are structured by temperature, resources and geographic location. Schulhof MA; Allen AE; Allen EE; Mladenov N; McCrow JP; Jones NT; Blanton J; Cavalheri HB; Kaul D; Symons CC; Shurin JB Mol Ecol; 2020 Jun; 29(11):2080-2093. PubMed ID: 32578266 [TBL] [Abstract][Full Text] [Related]
2. Antagonistic effects of temperature and dissolved organic carbon on fish growth in California mountain lakes. Symons CC; Schulhof MA; Cavalheri HB; Shurin JB Oecologia; 2019 Jan; 189(1):231-241. PubMed ID: 30426209 [TBL] [Abstract][Full Text] [Related]
3. Environmental Controls on Microbial Diversity in Arctic Lakes of West Greenland. Somers DJ; Strock KE; Saros JE Microb Ecol; 2020 Jul; 80(1):60-72. PubMed ID: 31848649 [TBL] [Abstract][Full Text] [Related]
4. Strong Saharan Dust Deposition Events Alter Microbial Diversity and Composition in Sediments of High-Mountain Lakes of Sierra Nevada (Spain). Castellano-Hinojosa A; Tortosa G; Fernández-Zambrano A; Correa-Galeote D; Bedmar EJ; Medina-Sánchez JM Microb Ecol; 2024 Jul; 87(1):99. PubMed ID: 39066818 [TBL] [Abstract][Full Text] [Related]
5. Global warming induces the succession of photosynthetic microbial communities in a glacial lake on the Tibetan Plateau. Ouyang J; Wu H; Yang H; Wang J; Liu J; Tong Y; Wang D; Huang M Water Res; 2023 Aug; 242():120213. PubMed ID: 37354841 [TBL] [Abstract][Full Text] [Related]
6. Microbial Nitrogen Transformation Potential in Sediments of Two Contrasting Lakes Is Spatially Structured but Seasonally Stable. Baumann KBL; Thoma R; Callbeck CM; Niederdorfer R; Schubert CJ; Müller B; Lever MA; Bürgmann H mSphere; 2022 Feb; 7(1):e0101321. PubMed ID: 35107340 [TBL] [Abstract][Full Text] [Related]
7. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Deininger A; Faithfull CL; Bergström AK Ecology; 2017 Apr; 98(4):982-994. PubMed ID: 28144934 [TBL] [Abstract][Full Text] [Related]
8. Differential response of high-elevation planktonic bacterial community structure and metabolism to experimental nutrient enrichment. Nelson CE; Carlson CA PLoS One; 2011 Mar; 6(3):e18320. PubMed ID: 21483836 [TBL] [Abstract][Full Text] [Related]
9. Linking heterotrophic bacterioplankton community composition to the optical dynamics of dissolved organic matter in a large eutrophic Chinese lake. Zhang W; Zhou Y; Jeppesen E; Wang L; Tan H; Zhang J Sci Total Environ; 2019 Aug; 679():136-147. PubMed ID: 31082588 [TBL] [Abstract][Full Text] [Related]
10. Dissolved organic carbon as major environmental factor affecting bacterioplankton communities in mountain lakes of eastern Japan. Fujii M; Kojima H; Iwata T; Urabe J; Fukui M Microb Ecol; 2012 Apr; 63(3):496-508. PubMed ID: 22109097 [TBL] [Abstract][Full Text] [Related]
11. Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA. Hayden CJ; Beman JM Environ Microbiol; 2016 Jun; 18(6):1782-91. PubMed ID: 26058326 [TBL] [Abstract][Full Text] [Related]
12. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain. Jiménez L; Rühland KM; Jeziorski A; Smol JP; Pérez-Martínez C Glob Chang Biol; 2018 Jan; 24(1):e139-e158. PubMed ID: 28833814 [TBL] [Abstract][Full Text] [Related]
13. Warming and oligotrophication cause shifts in freshwater phytoplankton communities. Verbeek L; Gall A; Hillebrand H; Striebel M Glob Chang Biol; 2018 Oct; 24(10):4532-4543. PubMed ID: 29856108 [TBL] [Abstract][Full Text] [Related]
14. Brownification increases the abundance of microorganisms related to carbon and nitrogen cycling in shallow lakes. Xing Y; Cheng L; Zheng L; Wu H; Tan Q; Wang X; Tian Q Environ Res; 2024 Sep; 257():119243. PubMed ID: 38810820 [TBL] [Abstract][Full Text] [Related]
15. Effects of brownification and warming on algal blooms, metabolism and higher trophic levels in productive shallow lake mesocosms. Feuchtmayr H; Pottinger TG; Moore A; De Ville MM; Caillouet L; Carter HT; Pereira MG; Maberly SC Sci Total Environ; 2019 Aug; 678():227-238. PubMed ID: 31075590 [TBL] [Abstract][Full Text] [Related]
16. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344 [TBL] [Abstract][Full Text] [Related]
17. Crossing Treeline: Bacterioplankton Communities of Alpine and Subalpine Rocky Mountain Lakes. Vincent K; Holland-Moritz H; Solon AJ; Gendron EMS; Schmidt SK Front Microbiol; 2021; 12():533121. PubMed ID: 35046907 [TBL] [Abstract][Full Text] [Related]
18. Temporal evolution of organic carbon concentrations in Swiss lakes: trends of allochthonous and autochthonous organic carbon. Rodríguez-Murillo JC; Filella M Sci Total Environ; 2015 Jul; 520():13-22. PubMed ID: 25782080 [TBL] [Abstract][Full Text] [Related]
19. Light and nutrient control phytoplankton biomass responses to global change in northern lakes. Bergström AK; Karlsson J Glob Chang Biol; 2019 Jun; 25(6):2021-2029. PubMed ID: 30897262 [TBL] [Abstract][Full Text] [Related]