These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32578532)

  • 1. Mitigating memory effects during undulatory locomotion on hysteretic materials.
    Schiebel PE; Astley HC; Rieser JM; Agarwal S; Hubicki C; Hubbard AM; Diaz K; Mendelson Iii JR; Kamrin K; Goldman DI
    Elife; 2020 Jun; 9():. PubMed ID: 32578532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotor benefits of being a slender and slick sand swimmer.
    Sharpe SS; Koehler SA; Kuckuk RM; Serrano M; Vela PA; Mendelson J; Goldman DI
    J Exp Biol; 2015 Feb; 218(Pt 3):440-50. PubMed ID: 25524983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical diffraction reveals the role of passive dynamics in a slithering snake.
    Schiebel PE; Rieser JM; Hubbard AM; Chen L; Rocklin DZ; Goldman DI
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4798-4803. PubMed ID: 30804193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snakes combine vertical and lateral bending to traverse uneven terrain.
    Fu Q; Astley HC; Li C
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35235918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric phase predicts locomotion performance in undulating living systems across scales.
    Rieser JM; Chong B; Gong C; Astley HC; Schiebel PE; Diaz K; Pierce CJ; Lu H; Hatton RL; Choset H; Goldman DI
    Proc Natl Acad Sci U S A; 2024 Jun; 121(24):e2320517121. PubMed ID: 38848301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical intelligence simplifies control in terrestrial limbless locomotion.
    Wang T; Pierce C; Kojouharov V; Chong B; Diaz K; Lu H; Goldman DI
    Sci Robot; 2023 Dec; 8(85):eadi2243. PubMed ID: 38117866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic modelling of snake traversing large, smooth obstacles reveals stability benefits of body compliance.
    Fu Q; Li C
    R Soc Open Sci; 2020 Feb; 7(2):191192. PubMed ID: 32257305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Side-impact collision: mechanics of obstacle negotiation in sidewinding snakes.
    Astley HC; Rieser JM; Kaba A; Paez VM; Tomkinson I; Mendelson JR; Goldman DI
    Bioinspir Biomim; 2020 Oct; 15(6):065005. PubMed ID: 33111708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surprising simplicities and syntheses in limbless self-propulsion in sand.
    Astley HC; Mendelson JR; Dai J; Gong C; Chong B; Rieser JM; Schiebel PE; Sharpe SS; Hatton RL; Choset H; Goldman DI
    J Exp Biol; 2020 Feb; 223(Pt 5):. PubMed ID: 32111654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming.
    Maladen RD; Ding Y; Umbanhowar PB; Kamor A; Goldman DI
    J R Soc Interface; 2011 Sep; 8(62):1332-45. PubMed ID: 21378020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Snakes mimic earthworms: propulsion using rectilinear travelling waves.
    Marvi H; Bridges J; Hu DL
    J R Soc Interface; 2013 Jul; 10(84):20130188. PubMed ID: 23635494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Friction enhancement in concertina locomotion of snakes.
    Marvi H; Hu DL
    J R Soc Interface; 2012 Nov; 9(76):3067-80. PubMed ID: 22728386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional consequences of convergently evolved microscopic skin features on snake locomotion.
    Rieser JM; Li TD; Tingle JL; Goldman DI; Mendelson JR
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snakes partition their body to traverse large steps stably.
    Gart SW; Mitchel TW; Li C
    J Exp Biol; 2019 Apr; 222(Pt 8):. PubMed ID: 30936272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What Defines Different Modes of Snake Locomotion?
    Jayne BC
    Integr Comp Biol; 2020 Jul; 60(1):156-170. PubMed ID: 32271916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction Forces and Rib Function During Locomotion in Snakes.
    Capano JG
    Integr Comp Biol; 2020 Jul; 60(1):215-231. PubMed ID: 32396605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems.
    Aguilar J; Zhang T; Qian F; Kingsbury M; McInroe B; Mazouchova N; Li C; Maladen R; Gong C; Travers M; Hatton RL; Choset H; Umbanhowar PB; Goldman DI
    Rep Prog Phys; 2016 Nov; 79(11):110001. PubMed ID: 27652614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscular mechanisms of snake locomotion: an electromyographic study of lateral undulation of the Florida banded water snake (Nerodia fasciata) and the yellow rat snake (Elaphe obsoleta).
    Jayne BC
    J Morphol; 1988 Aug; 197(2):159-81. PubMed ID: 3184194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facultatively Sidewinding Snakes and the Origins of Locomotor Specialization.
    Tingle JL
    Integr Comp Biol; 2020 Jul; 60(1):202-214. PubMed ID: 32176289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.