These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32578584)

  • 1. Nanoparticle and microorganism detection with a side-micron-orifice-based resistive pulse sensor.
    Song Y; Zhou T; Liu Q; Liu Z; Li D
    Analyst; 2020 Aug; 145(16):5466-5474. PubMed ID: 32578584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle detection on microfluidic chips by differential resistive pulse sensing (RPS) method.
    Peng R; Li D
    Talanta; 2018 Jul; 184():418-428. PubMed ID: 29674063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel microfluidic resistive pulse sensor with multiple voltage input channels and a side sensing gate for particle and cell detection.
    Zhou T; Song Y; Yuan Y; Li D
    Anal Chim Acta; 2019 Apr; 1052():113-123. PubMed ID: 30685029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle transport in conical-shaped nanopores.
    Lan WJ; Holden DA; Zhang B; White HS
    Anal Chem; 2011 May; 83(10):3840-7. PubMed ID: 21495727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based Coulter counter.
    Ito T; Sun L; Crooks RM
    Anal Chem; 2003 May; 75(10):2399-406. PubMed ID: 12918983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput multi-gate microfluidic resistive pulse sensing for biological nanoparticle detection.
    Kim JS; Kwon SY; Lee JY; Kim SD; Kim DY; Kim H; Jang N; Wang J; Han M; Kong SH
    Lab Chip; 2023 Mar; 23(7):1945-1953. PubMed ID: 36897079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistive pulse sensing device with embedded nanochannel (nanochannel-RPS) for label-free biomolecule and bionanoparticle analysis.
    Han Z; Liu J; Liu Z; Pan W; Yang Y; Chen X; Gao Y; Duan X
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33823494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additively Manufactured Flow-Resistive Pulse Sensors.
    Hampson SM; Pollard M; Hauer P; Salway H; Christie SDR; Platt M
    Anal Chem; 2019 Feb; 91(4):2947-2954. PubMed ID: 30652483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous particle counting and detecting on a chip.
    Wu X; Chon CH; Wang YN; Kang Y; Li D
    Lab Chip; 2008 Nov; 8(11):1943-9. PubMed ID: 18941697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sizing Individual Au Nanoparticles in Solution with Sub-Nanometer Resolution.
    German SR; Hurd TS; White HS; Mega TL
    ACS Nano; 2015 Jul; 9(7):7186-94. PubMed ID: 26083098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Time-Division Multiplexing Accessing Resistive Pulse Sensor for Particle Analysis.
    Choi G; Murphy E; Guan W
    ACS Sens; 2019 Jul; 4(7):1957-1963. PubMed ID: 31264411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization, detection, and counting of metal nanoparticles using flow cytometry.
    Zucker RM; Ortenzio JN; Boyes WK
    Cytometry A; 2016 Feb; 89(2):169-83. PubMed ID: 26619039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing.
    Peng R; Li D
    Nanoscale; 2017 May; 9(18):5964-5974. PubMed ID: 28440838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Speed Multipass Coulter Counter with Ultrahigh Resolution.
    Edwards MA; German SR; Dick JE; Bard AJ; White HS
    ACS Nano; 2015 Dec; 9(12):12274-82. PubMed ID: 26549738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems.
    Hammarström B; Laurell T; Nilsson J
    Lab Chip; 2012 Nov; 12(21):4296-304. PubMed ID: 22955667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistive-Pulse Measurements with Nanopipettes: Detection of Vascular Endothelial Growth Factor C (VEGF-C) Using Antibody-Decorated Nanoparticles.
    Cai H; Wang Y; Yu Y; Mirkin MV; Bhakta S; Bishop GW; Joshi AA; Rusling JF
    Anal Chem; 2015 Jun; 87(12):6403-10. PubMed ID: 26040997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Individual Molecules and Ions by Carbon Nanotube-Based Differential Resistive Pulse Sensor.
    Peng R; Tang XS; Li D
    Small; 2018 Apr; 14(15):e1800013. PubMed ID: 29504261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How the use of a short channel can improve the separation efficiency of nanoparticles in asymmetrical flow field-flow fractionation.
    Ojeda D; Sánchez P; Bolea E; Laborda F; Castillo JR
    J Chromatogr A; 2021 Jan; 1635():461759. PubMed ID: 33278672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing.
    Blundell EL; Vogel R; Platt M
    Langmuir; 2016 Feb; 32(4):1082-90. PubMed ID: 26757237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics.
    Pollard M; Hunsicker E; Platt M
    ACS Sens; 2020 Aug; 5(8):2578-2586. PubMed ID: 32638589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.