These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32578608)

  • 1. EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion.
    Martini A; Signorile M; Negri C; Kvande K; Lomachenko KA; Svelle S; Beato P; Berlier G; Borfecchia E; Bordiga S
    Phys Chem Chem Phys; 2020 Sep; 22(34):18950-18963. PubMed ID: 32578608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of copper sites in zeolites examined by Fourier and wavelet transform analysis of EXAFS.
    Sushkevich VL; Safonova OV; Palagin D; Newton MA; van Bokhoven JA
    Chem Sci; 2020 May; 11(20):5299-5312. PubMed ID: 34122988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper Pairing in the Mordenite Framework as a Function of the Cu
    Deplano G; Martini A; Signorile M; Borfecchia E; Crocellà V; Svelle S; Bordiga S
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25891-25896. PubMed ID: 34582094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment.
    Pappas DK; Martini A; Dyballa M; Kvande K; Teketel S; Lomachenko KA; Baran R; Glatzel P; Arstad B; Berlier G; Lamberti C; Bordiga S; Olsbye U; Svelle S; Beato P; Borfecchia E
    J Am Chem Soc; 2018 Nov; 140(45):15270-15278. PubMed ID: 30346154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of Cu-Al-Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites.
    Lee I; Lee MS; Tao L; Ikuno T; Khare R; Jentys A; Huthwelker T; Borca CN; Kalinko A; Gutiérrez OY; Govind N; Fulton JL; Hu JZ; Glezakou VA; Rousseau R; Sanchez-Sanchez M; Lercher JA
    JACS Au; 2021 Sep; 1(9):1412-1421. PubMed ID: 34604851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding C-H activation in light alkanes over Cu-MOR zeolites by coupling advanced spectroscopy and temperature-programmed reduction experiments.
    Kvande K; Garetto B; Deplano G; Signorile M; Solemsli BG; Prodinger S; Olsbye U; Beato P; Bordiga S; Svelle S; Borfecchia E
    Chem Sci; 2023 Sep; 14(36):9704-9723. PubMed ID: 37736625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation.
    Alayon EM; Nachtegaal M; Bodi A; Ranocchiari M; van Bokhoven JA
    Phys Chem Chem Phys; 2015 Mar; 17(12):7681-93. PubMed ID: 25732559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
    Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K
    Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of Methane Chemical Potential for Its Conversion to Methanol on Cu-Exchanged Mordenite.
    Zheng J; Lee I; Khramenkova E; Wang M; Peng B; Gutiérrez OY; Fulton JL; Camaioni DM; Khare R; Jentys A; Haller GL; Pidko EA; Sanchez-Sanchez M; Lercher JA
    Chemistry; 2020 Jun; 26(34):7563-7567. PubMed ID: 32092206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation and Reactivity Control of Cu-Oxo Clusters via Extraframework Al in Mordenite for Methane Oxidation.
    Tao L; Khramenkova E; Lee I; Ikuno T; Khare R; Jentys A; Fulton JL; Kolganov AA; Pidko EA; Sanchez-Sanchez M; Lercher JA
    J Am Chem Soc; 2023 Aug; 145(32):17710-17719. PubMed ID: 37545395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group.
    Adeyiga O; Odoh SO
    Chemphyschem; 2021 Jun; 22(11):1101-1109. PubMed ID: 33786957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.
    Narsimhan K; Michaelis VK; Mathies G; Gunther WR; Griffin RG; Román-Leshkov Y
    J Am Chem Soc; 2015 Feb; 137(5):1825-32. PubMed ID: 25562431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu-Exchanged Zeolites.
    Göltl F; Bhandari S; Lebrón-Rodríguez EA; Gold JI; Hutton DJ; Zones SI; Hermans I; Dumesic JA; Mavrikakis M
    Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202403179. PubMed ID: 38574295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFT Analysis of Methane C-H Activation and Over-Oxidation by [Cu
    Panthi D; Adeyiga O; Odoh SO
    Chemphyschem; 2021 Dec; 22(24):2517-2525. PubMed ID: 34519406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the Productivity of the Direct Conversion of Methane-to-Methanol over Copper-Exchanged Zeolite Omega (MAZ) via Oxygen Looping.
    Wieser J; Knorpp AJ; Stoian DC; Rzepka P; Newton MA; van Bokhoven JA
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202305140. PubMed ID: 37314832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites.
    Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA
    J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dioxygen Activation on Cu-MOR Zeolite: Theoretical Insights into the Formation of Cu
    Mahyuddin MH; Tanaka T; Staykov A; Shiota Y; Yoshizawa K
    Inorg Chem; 2018 Aug; 57(16):10146-10152. PubMed ID: 30091906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of Water-Cationic Species-Framework Guest-Host Interactions within Transition Metal Ion-Exchanged Mordenite Relevant to Selective Anaerobic Oxidation of Methane to Methanol.
    Zhang X; Cockreham CB; Huang Z; Sun H; Yang C; Marin-Flores OG; Wang B; Guo X; Ha S; Xu H; Wu D
    J Phys Chem Lett; 2020 Jun; 11(12):4774-4784. PubMed ID: 32452684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of methane to methanol with a bent mono(μ-oxo)dinickel anchored on the internal surfaces of micropores.
    Shan J; Huang W; Nguyen L; Yu Y; Zhang S; Li Y; Frenkel AI; Tao FF
    Langmuir; 2014 Jul; 30(28):8558-69. PubMed ID: 24896721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H
    Xu R; Liu N; Dai C; Li Y; Zhang J; Wu B; Yu G; Chen B
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16634-16640. PubMed ID: 33982395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.