These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32578657)

  • 1. Gold nanonails for surface-enhanced infrared absorption.
    Yin H; Li N; Si Y; Zhang H; Yang B; Wang J
    Nanoscale Horiz; 2020 Jul; 5(8):1200-1212. PubMed ID: 32578657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy.
    Yue W; Kravets V; Pu M; Wang C; Zhao Z; Hu Z
    Nanotechnology; 2019 Nov; 30(46):465206. PubMed ID: 31483763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Enhanced Infrared Absorption of Ligands on Colloidal Gold Nanowires through Resonant Coupling.
    Wang D; Wang X; Lin H; Wang B; Jiang J; Li Z
    Anal Chem; 2020 Mar; 92(5):3494-3498. PubMed ID: 31939283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates.
    Smitha SL; Gopchandran KG; Ravindran TR; Prasad VS
    Nanotechnology; 2011 Jul; 22(26):265705. PubMed ID: 21576800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas.
    Neubrech F; Huck C; Weber K; Pucci A; Giessen H
    Chem Rev; 2017 Apr; 117(7):5110-5145. PubMed ID: 28358482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances.
    Zhuo X; Zhu X; Li Q; Yang Z; Wang J
    ACS Nano; 2015 Jul; 9(7):7523-35. PubMed ID: 26135608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Infrared-Fluorescent Probes for Bioapplications Based on Silica-Coated Gold Nanobipyramids with Distance-Dependent Plasmon-Enhanced Fluorescence.
    Niu C; Song Q; He G; Na N; Ouyang J
    Anal Chem; 2016 Nov; 88(22):11062-11069. PubMed ID: 27735184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards multi-molecular surface-enhanced infrared absorption using metal plasmonics.
    Wagner M; Seifert A; Liz-Marzán LM
    Nanoscale Horiz; 2022 Oct; 7(11):1259-1278. PubMed ID: 36047407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA).
    Brown LV; Yang X; Zhao K; Zheng BY; Nordlander P; Halas NJ
    Nano Lett; 2015 Feb; 15(2):1272-80. PubMed ID: 25565006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classical Model of Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy.
    Gao Y; Aspnes DE; Franzen S
    J Phys Chem A; 2022 Jan; 126(2):341-351. PubMed ID: 35005959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy.
    Ohta N; Nomura K; Yagi I
    Langmuir; 2010 Dec; 26(23):18097-104. PubMed ID: 21043469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules.
    Milekhin AG; Cherkasova O; Kuznetsov SA; Milekhin IA; Rodyakina EE; Latyshev AV; Banerjee S; Salvan G; Zahn DRT
    Beilstein J Nanotechnol; 2017; 8():975-981. PubMed ID: 28546892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast studies of gold, nickel, and palladium nanorods.
    Sando GM; Berry AD; Owrutsky JC
    J Chem Phys; 2007 Aug; 127(7):074705. PubMed ID: 17718625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic Plasmon-Enhanced Second-Harmonic Generation on Colloidal Gold Nanocups.
    Ding SJ; Zhang H; Yang DJ; Qiu YH; Nan F; Yang ZJ; Wang J; Wang QQ; Lin HQ
    Nano Lett; 2019 Mar; 19(3):2005-2011. PubMed ID: 30721073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Absorption-Dominant Small Gold Nanorods and Their Plasmonic Properties.
    Jia H; Fang C; Zhu XM; Ruan Q; Wang YX; Wang J
    Langmuir; 2015 Jul; 31(26):7418-26. PubMed ID: 26079391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy.
    Dong L; Yang X; Zhang C; Cerjan B; Zhou L; Tseng ML; Zhang Y; Alabastri A; Nordlander P; Halas NJ
    Nano Lett; 2017 Sep; 17(9):5768-5774. PubMed ID: 28787169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10616-27. PubMed ID: 23417070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.