These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32578840)

  • 1. Coexpression analysis of a large-scale transcriptome identified a calmodulin-like protein regulating the development of adventitious roots in poplar.
    Xiao Z; Zhang Y; Liu M; Zhan C; Yang X; Nvsvrot T; Yan Z; Wang N
    Tree Physiol; 2020 Oct; 40(10):1405-1419. PubMed ID: 32578840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analysis of dynamic gene expression and investigation of the roles of hydrogen peroxide during adventitious rooting in poplar.
    Zhang Y; Xiao Z; Zhan C; Liu M; Xia W; Wang N
    BMC Plant Biol; 2019 Mar; 19(1):99. PubMed ID: 30866829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus.
    Ribeiro CL; Silva CM; Drost DR; Novaes E; Novaes CR; Dervinis C; Kirst M
    BMC Plant Biol; 2016 Mar; 16():66. PubMed ID: 26983547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Li J; Jia H; Sun P; Zhang J; Xia Y; Hu J; Wang L; Lu M
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32041377
    [No Abstract]   [Full Text] [Related]  

  • 5. Overexpression of a SHORT-ROOT transcriptional factor enhances the auxin mediated formation of adventitious roots and lateral roots in poplar trees.
    Qiao L; Zhang T; Yang H; Yang S; Wang J
    Plant Sci; 2022 Oct; 323():111408. PubMed ID: 35932828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MiRNA-target pairs regulate adventitious rooting in Populus: a functional role for miR167a and its target Auxin response factor 8.
    Cai H; Yang C; Liu S; Qi H; Wu L; Xu LA; Xu M
    Tree Physiol; 2019 Dec; 39(11):1922-1936. PubMed ID: 31504994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The miR159a-PeMYB33 module regulates poplar adventitious rooting through the abscisic acid signal pathway.
    Zhao M; Lei Y; Wu L; Qi H; Song Z; Xu M
    Plant J; 2024 May; 118(3):879-891. PubMed ID: 38271219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The WUSCHEL-related homeobox 5a (PtoWOX5a) is involved in adventitious root development in poplar.
    Li J; Zhang J; Jia H; Liu B; Sun P; Hu J; Wang L; Lu M
    Tree Physiol; 2018 Jan; 38(1):139-153. PubMed ID: 29036435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bZIP53-IAA4 module inhibits adventitious root development in Populus.
    Zhang Y; Yang X; Cao P; Xiao Z; Zhan C; Liu M; Nvsvrot T; Wang N
    J Exp Bot; 2020 Jun; 71(12):3485-3498. PubMed ID: 32076710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TDIF regulates auxin accumulation and modulates auxin sensitivity to enhance both adventitious root and lateral root formation in poplar trees.
    Yue J; Yang H; Yang S; Wang J
    Tree Physiol; 2020 Oct; 40(11):1534-1547. PubMed ID: 32598454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PagMYB180 regulates adventitious rooting via a ROS/PCD-dependent pathway in poplar.
    Tong B; Liu Y; Wang Y; Li Q
    Plant Sci; 2024 Sep; 346():112115. PubMed ID: 38768868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar.
    Xu M; Xie W; Huang M
    Physiol Plant; 2015 Dec; 155(4):446-56. PubMed ID: 25998748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.).
    An H; Zhang J; Xu F; Jiang S; Zhang X
    BMC Plant Biol; 2020 Apr; 20(1):182. PubMed ID: 32334538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar.
    Rigal A; Yordanov YS; Perrone I; Karlberg A; Tisserant E; Bellini C; Busov VB; Martin F; Kohler A; Bhalerao R; Legué V
    Plant Physiol; 2012 Dec; 160(4):1996-2006. PubMed ID: 23077242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and transcriptional regulation in poplar roots and leaves during acclimation to high temperature and drought.
    Jia J; Li S; Cao X; Li H; Shi W; Polle A; Liu TX; Peng C; Luo ZB
    Physiol Plant; 2016 May; 157(1):38-53. PubMed ID: 26497326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptomic analysis uncovers conserved pathways involved in adventitious root formation in poplar.
    Luo J; Nvsvrot T; Wang N
    Physiol Mol Biol Plants; 2021 Sep; 27(9):1903-1918. PubMed ID: 34629770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA negatively regulates adventitious root development in poplar.
    Xie T; Ji J; Chen W; Yue J; Du C; Sun J; Chen L; Jiang Z; Shi S
    J Exp Bot; 2020 Feb; 71(4):1459-1474. PubMed ID: 31740934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytokinin type-B response regulator PeRR12 is a negative regulator of adventitious rooting and salt tolerance in poplar.
    Qi H; Cai H; Liu X; Liu S; Ding C; Xu M
    Plant Sci; 2022 Dec; 325():111456. PubMed ID: 36087886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcription factor WRKY75 regulates the development of adventitious roots, lateral buds and callus by modulating hydrogen peroxide content in poplar.
    Zhang Y; Yang X; Nvsvrot T; Huang L; Cai G; Ding Y; Ren W; Wang N
    J Exp Bot; 2022 Mar; 73(5):1483-1498. PubMed ID: 34791155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs expression patterns in the response of poplar woody root to bending stress.
    Rossi M; Trupiano D; Tamburro M; Ripabelli G; Montagnoli A; Chiatante D; Scippa GS
    Planta; 2015 Jul; 242(1):339-51. PubMed ID: 25963516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.