These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32579240)

  • 1. Extended TAQing system for large-scale plant genome reorganization.
    Tanaka H; Muramoto N; Sugimoto H; Oda AH; Ohta K
    Plant J; 2020 Sep; 103(6):2139-2150. PubMed ID: 32579240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks.
    Muramoto N; Oda A; Tanaka H; Nakamura T; Kugou K; Suda K; Kobayashi A; Yoneda S; Ikeuchi A; Sugimoto H; Kondo S; Ohto C; Shibata T; Mitsukawa N; Ohta K
    Nat Commun; 2018 May; 9(1):1995. PubMed ID: 29777105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TAQing2.0 for genome reorganization of asexual industrial yeasts by direct protein transfection.
    Yasukawa T; Oda AH; Nakamura T; Masuo N; Tamura M; Yamasaki Y; Imura M; Yamada T; Ohta K
    Commun Biol; 2022 Feb; 5(1):144. PubMed ID: 35177796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells.
    Tovkach A; Zeevi V; Tzfira T
    Plant J; 2009 Feb; 57(4):747-57. PubMed ID: 18980651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene mapping methodology powered by induced genome rearrangements.
    Yone H; Kono H; Hirai H; Ohta K
    Sci Rep; 2022 Oct; 12(1):16658. PubMed ID: 36198847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease.
    Antunes MS; Smith JJ; Jantz D; Medford JI
    BMC Biotechnol; 2012 Nov; 12():86. PubMed ID: 23148662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana.
    Hirano T; Kazama Y; Ishii K; Ohbu S; Shirakawa Y; Abe T
    Plant J; 2015 Apr; 82(1):93-104. PubMed ID: 25690092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plastid-targeted forms of restriction endonucleases enhance the plastid genome rearrangement rate and trigger the reorganization of its genomic architecture.
    Sugimoto H; Hirano M; Tanaka H; Tanaka T; Kitagawa-Yogo R; Muramoto N; Mitsukawa N
    Plant J; 2020 Jun; 102(5):1042-1057. PubMed ID: 31925982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA Break Repair in Plants and Its Application for Genome Engineering.
    Schmidt C; Pacher M; Puchta H
    Methods Mol Biol; 2019; 1864():237-266. PubMed ID: 30415341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic nucleases for genome engineering in plants: prospects for a bright future.
    Puchta H; Fauser F
    Plant J; 2014 Jun; 78(5):727-41. PubMed ID: 24112784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Frequent reorganization of the genome produced unique transcription and translation system in higher plant mitochondria].
    Sugiyama Y
    Tanpakushitsu Kakusan Koso; 2005 Nov; 50(14 Suppl):1786-91. PubMed ID: 16318317
    [No Abstract]   [Full Text] [Related]  

  • 12. Higher intron loss rate in Arabidopsis thaliana than A. lyrata is consistent with stronger selection for a smaller genome.
    Fawcett JA; Rouzé P; Van de Peer Y
    Mol Biol Evol; 2012 Feb; 29(2):849-59. PubMed ID: 21998273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana.
    Fauser F; Schiml S; Puchta H
    Plant J; 2014 Jul; 79(2):348-59. PubMed ID: 24836556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L.) heynh.
    Visioli G; Maestri E; Marmiroli N
    Plant Mol Biol; 1997 Jun; 34(3):517-27. PubMed ID: 9225862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription is a major driving force for plastid genome instability in Arabidopsis.
    Pérez Di Giorgio JA; Lepage É; Tremblay-Belzile S; Truche S; Loubert-Hudon A; Brisson N
    PLoS One; 2019; 14(4):e0214552. PubMed ID: 30943245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged homeologous sequences in Arabidopsis thaliana germinal tissues.
    Lafleuriel J; Degroote F; Depeiges A; Picard G
    Plant Mol Biol; 2007 Apr; 63(6):833-46. PubMed ID: 17294256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species.
    Bento M; Tomás D; Viegas W; Silva M
    Cytogenet Genome Res; 2013; 140(2-4):286-94. PubMed ID: 23899810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autopolyploidy leads to rapid genomic changes in Arabidopsis thaliana.
    Liu S; Yang Y; Wei F; Duan J; Braynen J; Tian B; Cao G; Shi G; Yuan J
    Theory Biosci; 2017 Dec; 136(3-4):199-206. PubMed ID: 28612184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells.
    So A; Le Guen T; Lopez BS; Guirouilh-Barbat J
    FEBS J; 2017 Aug; 284(15):2324-2344. PubMed ID: 28244221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.