These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32579339)

  • 1. pH-Controlled Detachable DNA Circuitry and Its Application in Resettable Self-Assembly of Spherical Nucleic Acids.
    Guo Y; Yao D; Zheng B; Sun X; Zhou X; Wei B; Xiao S; He M; Li C; Liang H
    ACS Nano; 2020 Jul; 14(7):8317-8327. PubMed ID: 32579339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Strategy for Visible Disassembly of Spherical Nucleic Acids Programmed by Catalytic DNA Circuits.
    Wei B; Yao D; Zheng B; Zhou X; Guo Y; Li X; Li C; Xiao S; Liang H
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):19724-19733. PubMed ID: 31083902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating DNA-strand-displacement circuitry with self-assembly of spherical nucleic acids.
    Yao D; Song T; Sun X; Xiao S; Huang F; Liang H
    J Am Chem Soc; 2015 Nov; 137(44):14107-13. PubMed ID: 26485090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative Branch Migration: A Mechanism for Flexible Control of DNA Strand Displacement.
    Weng Z; Yu H; Luo W; Guo Y; Liu Q; Zhang L; Zhang Z; Wang T; Dai L; Zhou X; Han X; Wang L; Li J; Yang Y; Xie G
    ACS Nano; 2022 Feb; 16(2):3135-3144. PubMed ID: 35113525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stacking modular DNA circuitry in cascading self-assembly of spherical nucleic acids.
    Yao D; Xiao S; Zhou X; Li H; Wang B; Wei B; Liang H
    J Mater Chem B; 2017 Aug; 5(31):6256-6265. PubMed ID: 32264441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Controlled, Toehold-Mediated Logic Circuit for Assembly of DNA Tiles.
    Xing C; Chen Z; Dai J; Zhou J; Wang L; Zhang KL; Yin X; Lu C; Yang H
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6336-6342. PubMed ID: 31918539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of DNA Strand Displacement Using an Allosteric DNA Toehold.
    Yang X; Tang Y; Traynor SM; Li F
    J Am Chem Soc; 2016 Oct; 138(42):14076-14082. PubMed ID: 27704809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What Controls the "Off/On Switch" in the Toehold-Mediated Strand Displacement Reaction on DNA Conjugated Gold Nanoparticles?
    Yao D; Wang B; Xiao S; Song T; Huang F; Liang H
    Langmuir; 2015 Jun; 31(25):7055-61. PubMed ID: 26057346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic Trans-Assembly of DNA Nanostructures.
    Shin J; Kim J; Park SH; Ha TH
    ACS Nano; 2018 Sep; 12(9):9423-9432. PubMed ID: 30114364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rational design of a cascaded DNA circuit for nanoparticle assembly and its application in the discrimination of single-base changes.
    Zheng B; Dong H; Zhu J; Zhang Q; Yang S; Yao D
    J Mater Chem B; 2022 Jun; 10(24):4561-4567. PubMed ID: 35621087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable and Modular miRNA Classifier through Indirect Associative Toehold Strand Displacement.
    Chen RP; Chen W
    ACS Synth Biol; 2022 Aug; 11(8):2719-2725. PubMed ID: 35816756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toehold-Mediated Strand Displacement in a Triplex Forming Nucleic Acid Clamp for Reversible Regulation of Polymerase Activity and Protein Expression.
    Nguyen TJD; Manuguerra I; Kumar V; Gothelf KV
    Chemistry; 2019 Sep; 25(53):12303-12307. PubMed ID: 31373735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles and Applications of Nucleic Acid Strand Displacement Reactions.
    Simmel FC; Yurke B; Singh HR
    Chem Rev; 2019 May; 119(10):6326-6369. PubMed ID: 30714375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures.
    Petersen P; Tikhomirov G; Qian L
    Nat Commun; 2018 Dec; 9(1):5362. PubMed ID: 30560865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can strand displacement take place in DNA triplexes?
    Li Q; Tian C; Li X; Mao C
    Org Biomol Chem; 2018 Jan; 16(3):372-375. PubMed ID: 29265153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuzzy DNA Strand Displacement: A Strategy to Decrease the Complexity of DNA Network Design.
    Wang Z; Hu Y; Pan L
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):14979-14985. PubMed ID: 32396703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA tile self-assembly driven by antibody-mediated four-way branch migration.
    Cui X; Liu Y; Zhang Q
    Analyst; 2022 May; 147(10):2223-2230. PubMed ID: 35467671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal pH-Responsive and Metal-Ion-Free Self-Assembly of DNA Nanostructures.
    Li Y; Song L; Wang B; He J; Li Y; Deng Z; Mao C
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6892-6895. PubMed ID: 29683548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipative Control over the Toehold-Mediated DNA Strand Displacement Reaction.
    Del Grosso E; Irmisch P; Gentile S; Prins LJ; Seidel R; Ricci F
    Angew Chem Int Ed Engl; 2022 Jun; 61(23):e202201929. PubMed ID: 35315568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.