These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 32579343)
41. Direct experimental evidence for the high chemical reactivity of α- and β-xylopyranosides adopting a (2,5)B conformation in glycosyl transfer. Amorim L; Marcelo F; Rousseau C; Nieto L; Jiménez-Barbero J; Marrot J; Rauter AP; Sollogoub M; Bols M; Blériot Y Chemistry; 2011 Jun; 17(26):7345-56. PubMed ID: 21567492 [TBL] [Abstract][Full Text] [Related]
42. Stereoselective glycosylations of 2-azido-2-deoxy-glucosides using intermediate sulfonium ions. Park J; Kawatkar S; Kim JH; Boons GJ Org Lett; 2007 May; 9(10):1959-62. PubMed ID: 17432867 [TBL] [Abstract][Full Text] [Related]
43. Characterization of Elusive Reaction Intermediates Using Infrared Ion Spectroscopy: Application to the Experimental Characterization of Glycosyl Cations. Braak FT; Elferink H; Houthuijs KJ; Oomens J; Martens J; Boltje TJ Acc Chem Res; 2022 Jun; 55(12):1669-1679. PubMed ID: 35616920 [TBL] [Abstract][Full Text] [Related]
44. Acceptor-dependent stereoselective glycosylation: 2'-CB glycoside-mediated direct beta-D-arabinofuranosylation and efficient synthesis of the octaarabinofuranoside in mycobacterial cell wall. Lee YJ; Lee K; Jung EH; Jeon HB; Kim KS Org Lett; 2005 Jul; 7(15):3263-6. PubMed ID: 16018636 [TBL] [Abstract][Full Text] [Related]
45. Synthesis and use of glycosyl phosphates as glycosyl donors. Plante OJ; Andrade RB; Seeberger PH Org Lett; 1999 Jul; 1(2):211-4. PubMed ID: 10905866 [TBL] [Abstract][Full Text] [Related]
47. Glycosyl Exchange of Unactivated Glycosidic Bonds: Suppressing or Embracing Side Reactivity in Catalytic Glycosylations. Martin JL; Sati GC; Malakar T; Hatt J; Zimmerman PM; Montgomery J J Org Chem; 2022 May; 87(9):5817-5826. PubMed ID: 35413188 [TBL] [Abstract][Full Text] [Related]
48. Impact of Aromatic Stacking on Glycoside Reactivity: Balancing CH/π and Cation/π Interactions for the Stabilization of Glycosyl-Oxocarbenium Ions. Montalvillo-Jiménez L; Santana AG; Corzana F; Jiménez-Osés G; Jiménez-Barbero J; Gómez AM; Asensio JL J Am Chem Soc; 2019 Aug; 141(34):13372-13384. PubMed ID: 31390207 [TBL] [Abstract][Full Text] [Related]
49. Bromodimethylsulfonium bromide/silver triflate-promoted glycosylations using glycosyl allenoates as donors. Zhang Y; Wang P; Song N; Li M Carbohydr Res; 2013 Nov; 381():101-11. PubMed ID: 24095942 [TBL] [Abstract][Full Text] [Related]
50. Recent development of stereoselective C-glycosylation via generation of glycosyl radical. Ghosh T; Nokami T Carbohydr Res; 2022 Dec; 522():108677. PubMed ID: 36193593 [TBL] [Abstract][Full Text] [Related]
51. Theoretical Studies of the Glycosidation of 2-O-Substituted 5-Fluorouracil: N-Regioselective Synthesis with the Phase-Transfer-Catalysis Method. Wang YG; Barnes EC J Phys Chem A; 2017 Nov; 121(46):8866-8883. PubMed ID: 29072908 [TBL] [Abstract][Full Text] [Related]
52. Highly alpha- and beta-selective radical C-glycosylation reactions using a controlling anomeric effect based on the conformational restriction strategy. A study on the conformation-anomeric effect-stereoselectivity relationship in anomeric radical reactions. Abe H; Shuto S; Matsuda A J Am Chem Soc; 2001 Dec; 123(48):11870-82. PubMed ID: 11724593 [TBL] [Abstract][Full Text] [Related]
53. A minimalist approach to stereoselective glycosylation with unprotected donors. Le Mai Hoang K; He JX; Báti G; Chan-Park MB; Liu XW Nat Commun; 2017 Oct; 8(1):1146. PubMed ID: 29079775 [TBL] [Abstract][Full Text] [Related]
54. Role of ion pairs in model glycosylation reactions of permethylated glucosyl and xylosyl triflates. Sakai H; Tsushida S; Hosoya T; Miyafuji H Carbohydr Res; 2024 Oct; 544():109227. PubMed ID: 39142017 [TBL] [Abstract][Full Text] [Related]
55. β-Stereoselective Mannosylation Using 2,6-Lactones. Hashimoto Y; Tanikawa S; Saito R; Sasaki K J Am Chem Soc; 2016 Nov; 138(45):14840-14843. PubMed ID: 27782395 [TBL] [Abstract][Full Text] [Related]
56. Relevance of the glycosyl donor to the regioselectivity of glycosidation of primary-secondary diol acceptors and application of these ideas to in situ three-component double differential glycosidation. Uriel C; Agocs A; Gómez AM; López JC; Fraser-Reid B Org Lett; 2005 Oct; 7(22):4899-902. PubMed ID: 16235917 [TBL] [Abstract][Full Text] [Related]
57. Exploring glycosyl sulphates as donors for chemical glycosylation. Imperio D; Campo F; Panza L Org Biomol Chem; 2021 Jun; 19(22):4930-4936. PubMed ID: 33982734 [TBL] [Abstract][Full Text] [Related]
58. Glycosyl trichloroacetylcarbamate: a new glycosyl donor for O-glycosylation. Jayakanthan K; Vankar YD Carbohydr Res; 2005 Dec; 340(17):2688-92. PubMed ID: 16212950 [TBL] [Abstract][Full Text] [Related]
59. Mechanism of Glycosylation of Anomeric Sulfonium Ions. Fang T; Gu Y; Huang W; Boons GJ J Am Chem Soc; 2016 Mar; 138(9):3002-11. PubMed ID: 26878147 [TBL] [Abstract][Full Text] [Related]
60. A new method of anomeric protection and activation based on the conversion of glycosyl azides into glycosyl fluorides. Bröder W; Kunz H Carbohydr Res; 1993 Oct; 249(1):221-41. PubMed ID: 8252554 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]