BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32579623)

  • 1. Deep learning for 'artefact' removal in infrared spectroscopy.
    Guo S; Mayerhöfer T; Pahlow S; Hübner U; Popp J; Bocklitz T
    Analyst; 2020 Aug; 145(15):5213-5220. PubMed ID: 32579623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples.
    Bassan P; Kohler A; Martens H; Lee J; Byrne HJ; Dumas P; Gazi E; Brown M; Clarke N; Gardner P
    Analyst; 2010 Feb; 135(2):268-77. PubMed ID: 20098758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'.
    Bassan P; Byrne HJ; Bonnier F; Lee J; Dumas P; Gardner P
    Analyst; 2009 Aug; 134(8):1586-93. PubMed ID: 20448924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep convolutional neural network recovers pure absorbance spectra from highly scatter-distorted spectra of cells.
    Magnussen EA; Solheim JH; Blazhko U; Tafintseva V; Tøndel K; Liland KH; Dzurendova S; Shapaval V; Sandt C; Borondics F; Kohler A
    J Biophotonics; 2020 Dec; 13(12):e202000204. PubMed ID: 32844585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field standing wave artefacts in FTIR micro-spectroscopy of biological materials.
    Filik J; Frogley MD; Pijanka JK; Wehbe K; Cinque G
    Analyst; 2012 Feb; 137(4):853-61. PubMed ID: 22231204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.
    Gobrecht A; Bendoula R; Roger JM; Bellon-Maurel V
    Anal Chim Acta; 2015 Jan; 853():486-494. PubMed ID: 25467494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Steps of Infrared (IR) Spectral Analysis: Pre-Processing, (Classical) Data Modelling, and Deep Learning.
    Mokari A; Guo S; Bocklitz T
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.
    Konevskikh T; Ponossov A; Blümel R; Lukacs R; Kohler A
    Analyst; 2015 Jun; 140(12):3969-80. PubMed ID: 25893226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-Learning-Enabled High-Fidelity Absorbance Spectra from Distorted Dual-Comb Absorption Spectroscopy for Gas Quantification Analysis.
    Huang C; Zhang T; Kong X; Li Y; Wei H
    Appl Spectrosc; 2024 Mar; 78(3):310-320. PubMed ID: 38298007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removing interference-based effects from infrared spectra - interference fringes re-revisited.
    Mayerhöfer TG; Pahlow S; Hübner U; Popp J
    Analyst; 2020 May; 145(9):3385-3394. PubMed ID: 32239059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mie scatter corrections in single cell infrared microspectroscopy.
    Konevskikh T; Lukacs R; Blümel R; Ponossov A; Kohler A
    Faraday Discuss; 2016 Jun; 187():235-57. PubMed ID: 27034998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric Sphere Clusters as a Model to Understand Infrared Spectroscopic Imaging Data Recorded from Complex Samples.
    Rasskazov IL; Spegazzini N; Carney PS; Bhargava R
    Anal Chem; 2017 Oct; 89(20):10813-10818. PubMed ID: 28895722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating and correcting mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction.
    Kohler A; Sulé-Suso J; Sockalingum GD; Tobin M; Bahrami F; Yang Y; Pijanka J; Dumas P; Cotte M; van Pittius DG; Parkes G; Martens H
    Appl Spectrosc; 2008 Mar; 62(3):259-66. PubMed ID: 18339231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An open-source code for Mie extinction extended multiplicative signal correction for infrared microscopy spectra of cells and tissues.
    Solheim JH; Gunko E; Petersen D; Großerüschkamp F; Gerwert K; Kohler A
    J Biophotonics; 2019 Aug; 12(8):e201800415. PubMed ID: 30793501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Electric Field Standing Wave Effect in Infrared Transmission Spectroscopy.
    Mayerhöfer TG; Mutschke H; Popp J
    Chemphyschem; 2017 Oct; 18(20):2916-2923. PubMed ID: 28771914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relating Near-Infrared Light Path-Length Modifications to the Water Content of Scattering Media in Near-Infrared Spectroscopy: Toward a New Bouguer-Beer-Lambert Law.
    Mallet A; Tsenkova R; Muncan J; Charnier C; Latrille É; Bendoula R; Steyer JP; Roger JM
    Anal Chem; 2021 May; 93(17):6817-6823. PubMed ID: 33886268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards retrieving dispersion profiles using quantum-mimic optical coherence tomography and machine learning.
    Maliszewski KA; Kolenderski P; Vetrova V; Kolenderska SM
    Opt Express; 2022 Dec; 30(25):45624-45634. PubMed ID: 36522965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CaF
    Mayerhöfer TG; Pahlow S; Hübner U; Popp J
    Anal Chem; 2020 Jul; 92(13):9024-9031. PubMed ID: 32456415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement artefact removal from NIRS signal using multi-channel IMU data.
    Siddiquee MR; Marquez JS; Atri R; Ramon R; Perry Mayrand R; Bai O
    Biomed Eng Online; 2018 Sep; 17(1):120. PubMed ID: 30200984
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.