These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 32579935)
1. Small Molecule Dysregulation of TEAD Lipidation Induces a Dominant-Negative Inhibition of Hippo Pathway Signaling. Holden JK; Crawford JJ; Noland CL; Schmidt S; Zbieg JR; Lacap JA; Zang R; Miller GM; Zhang Y; Beroza P; Reja R; Lee W; Tom JYK; Fong R; Steffek M; Clausen S; Hagenbeek TJ; Hu T; Zhou Z; Shen HC; Cunningham CN Cell Rep; 2020 Jun; 31(12):107809. PubMed ID: 32579935 [TBL] [Abstract][Full Text] [Related]
2. Identification of resistance mechanisms to small-molecule inhibition of TEAD-regulated transcription. Kulkarni A; Mohan V; Tang TT; Post L; Chan YC; Manning M; Thio N; Parker BL; Dawson MA; Rosenbluh J; Vissers JH; Harvey KF EMBO Rep; 2024 Sep; 25(9):3944-3969. PubMed ID: 39103676 [TBL] [Abstract][Full Text] [Related]
3. Hippo pathway inhibition by blocking the YAP/TAZ-TEAD interface: a patent review. Crawford JJ; Bronner SM; Zbieg JR Expert Opin Ther Pat; 2018 Dec; 28(12):867-873. PubMed ID: 30482112 [No Abstract] [Full Text] [Related]
4. Allosteric Modulation of the YAP/TAZ-TEAD Interaction by Palmitoylation and Small-Molecule Inhibitors. Mills KR; Misra J; Torabifard H J Phys Chem B; 2024 Apr; 128(16):3795-3806. PubMed ID: 38606592 [TBL] [Abstract][Full Text] [Related]
5. A Novel Irreversible TEAD Inhibitor, SWTX-143, Blocks Hippo Pathway Transcriptional Output and Causes Tumor Regression in Preclinical Mesothelioma Models. Hillen H; Candi A; Vanderhoydonck B; Kowalczyk W; Sansores-Garcia L; Kesikiadou EC; Van Huffel L; Spiessens L; Nijs M; Soons E; Haeck W; Klaassen H; Smets W; Spieser SA; Marchand A; Chaltin P; Ciesielski F; Debaene F; Chen L; Kamal A; Gwaltney SL; Versele M; Halder GA Mol Cancer Ther; 2024 Jan; 23(1):3-13. PubMed ID: 37748190 [TBL] [Abstract][Full Text] [Related]
6. Palmitoylation of TEAD Transcription Factors Is Required for Their Stability and Function in Hippo Pathway Signaling. Noland CL; Gierke S; Schnier PD; Murray J; Sandoval WN; Sagolla M; Dey A; Hannoush RN; Fairbrother WJ; Cunningham CN Structure; 2016 Jan; 24(1):179-186. PubMed ID: 26724994 [TBL] [Abstract][Full Text] [Related]
7. Targeting Hippo pathway by specific interruption of YAP-TEAD interaction using cyclic YAP-like peptides. Zhou Z; Hu T; Xu Z; Lin Z; Zhang Z; Feng T; Zhu L; Rong Y; Shen H; Luk JM; Zhang X; Qin N FASEB J; 2015 Feb; 29(2):724-32. PubMed ID: 25384421 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence polarization assay for the identification and evaluation of inhibitors at YAP-TEAD protein-protein interface 3. Zhou W; Li Y; Song J; Li C Anal Biochem; 2019 Dec; 586():113413. PubMed ID: 31479631 [TBL] [Abstract][Full Text] [Related]
9. Targeting the Hippo Pathway for Anti-cancer Therapies. Gong R; Yu FX Curr Med Chem; 2015; 22(35):4104-17. PubMed ID: 26429069 [TBL] [Abstract][Full Text] [Related]
10. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Chan P; Han X; Zheng B; DeRan M; Yu J; Jarugumilli GK; Deng H; Pan D; Luo X; Wu X Nat Chem Biol; 2016 Apr; 12(4):282-9. PubMed ID: 26900866 [TBL] [Abstract][Full Text] [Related]
11. Activation of Hepatocyte Growth Factor/MET Signaling as a Mechanism of Acquired Resistance to a Novel YAP1/TEAD Small Molecule Inhibitor. Moure CJ; Vara B; Cheng MM; Sondey C; Muise E; Park E; Vela Ramirez JE; Su D; D'Souza S; Yan Q; Yeung CS; Zhang M; Mansueto MS; Linn D; Buchanan M; Foti R; DiMauro E; Long B; Simov V; Barry ER Mol Cancer Ther; 2024 Aug; 23(8):1095-1108. PubMed ID: 38691847 [TBL] [Abstract][Full Text] [Related]
12. Direct and selective pharmacological disruption of the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and RAS-MAPK-altered cancers. Chapeau EA; Sansregret L; Galli GG; Chène P; Wartmann M; Mourikis TP; Jaaks P; Baltschukat S; Barbosa IAM; Bauer D; Brachmann SM; Delaunay C; Estadieu C; Faris JE; Furet P; Harlfinger S; Hueber A; Jiménez Núñez E; Kodack DP; Mandon E; Martin T; Mesrouze Y; Romanet V; Scheufler C; Sellner H; Stamm C; Sterker D; Tordella L; Hofmann F; Soldermann N; Schmelzle T Nat Cancer; 2024 Jul; 5(7):1102-1120. PubMed ID: 38565920 [TBL] [Abstract][Full Text] [Related]
13. Cell contact and Nf2/Merlin-dependent regulation of TEAD palmitoylation and activity. Kim NG; Gumbiner BM Proc Natl Acad Sci U S A; 2019 May; 116(20):9877-9882. PubMed ID: 31043565 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the Hippo Pathway Transcription Factor TEAD. Lin KC; Park HW; Guan KL Trends Biochem Sci; 2017 Nov; 42(11):862-872. PubMed ID: 28964625 [TBL] [Abstract][Full Text] [Related]
15. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Holden JK; Cunningham CN Cancers (Basel); 2018 Mar; 10(3):. PubMed ID: 29558384 [TBL] [Abstract][Full Text] [Related]
16. Validation of chemical compound library screening for transcriptional co-activator with PDZ-binding motif inhibitors using GFP-fused transcriptional co-activator with PDZ-binding motif. Nagashima S; Maruyama J; Kawano S; Iwasa H; Nakagawa K; Ishigami-Yuasa M; Kagechika H; Nishina H; Hata Y Cancer Sci; 2016 Jun; 107(6):791-802. PubMed ID: 27009852 [TBL] [Abstract][Full Text] [Related]
17. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor. Valencia-Sama I; Zhao Y; Lai D; Janse van Rensburg HJ; Hao Y; Yang X J Biol Chem; 2015 Jul; 290(27):16906-17. PubMed ID: 25995450 [TBL] [Abstract][Full Text] [Related]
18. Small Molecule Inhibitors of TEAD Auto-palmitoylation Selectively Inhibit Proliferation and Tumor Growth of Tang TT; Konradi AW; Feng Y; Peng X; Ma M; Li J; Yu FX; Guan KL; Post L Mol Cancer Ther; 2021 Jun; 20(6):986-998. PubMed ID: 33850002 [TBL] [Abstract][Full Text] [Related]
19. The TEAD4-YAP/TAZ protein-protein interaction: expected similarities and unexpected differences. Hau JC; Erdmann D; Mesrouze Y; Furet P; Fontana P; Zimmermann C; Schmelzle T; Hofmann F; Chène P Chembiochem; 2013 Jul; 14(10):1218-25. PubMed ID: 23780915 [TBL] [Abstract][Full Text] [Related]
20. Cysteine S-Glutathionylation Promotes Stability and Activation of the Hippo Downstream Effector Transcriptional Co-activator with PDZ-binding Motif (TAZ). Gandhirajan RK; Jain M; Walla B; Johnsen M; Bartram MP; Huynh Anh M; Rinschen MM; Benzing T; Schermer B J Biol Chem; 2016 May; 291(22):11596-607. PubMed ID: 27048650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]