These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32580549)

  • 1. Photoresponsive Electrochemical DNA Biosensors Achieving Various Dynamic Ranges by Using Only-One Capture Probe.
    Lin M; Yi X; Wan H; Zhang J; Huang F; Xia F
    Anal Chem; 2020 Jul; 92(14):9963-9970. PubMed ID: 32580549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures.
    Song P; Li M; Shen J; Pei H; Chao J; Su S; Aldalbahi A; Wang L; Shi J; Song S; Wang L; Fan C; Zuo X
    Anal Chem; 2016 Aug; 88(16):8043-9. PubMed ID: 27435955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
    Lubin AA; Plaxco KW
    Acc Chem Res; 2010 Apr; 43(4):496-505. PubMed ID: 20201486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Molecule Profiling of Molecular Recognition at a Model Electrochemical Biosensor.
    Gu Q; Nanney W; Cao HH; Wang H; Ye T
    J Am Chem Soc; 2018 Oct; 140(43):14134-14143. PubMed ID: 30293418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155.
    Xu S; Chang Y; Wu Z; Li Y; Yuan R; Chai Y
    Biosens Bioelectron; 2020 Feb; 149():111848. PubMed ID: 31726271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reagentless and reusable electrochemical DNA sensor based on target hybridization-induced stem-loop probe formation.
    Yu ZG; Lai RY
    Chem Commun (Camb); 2012 Nov; 48(85):10523-5. PubMed ID: 22992567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-signalling electrochemical DNA sensor based on target hybridization-induced change in DNA probe flexibility.
    Yang W; Lai RY
    Chem Commun (Camb); 2012 Sep; 48(69):8703-5. PubMed ID: 22825042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Sensitivity of Photoelectrochemical DNA Biosensing Using Plasmonic DNA Barcodes and Differential Signal Readout.
    Victorious A; Saha S; Pandey R; Soleymani L
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):7316-7322. PubMed ID: 33403773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved sensitivity for the electrochemical biosensor with an adjunct probe.
    Yang K; Zhang CY
    Anal Chem; 2010 Nov; 82(22):9500-5. PubMed ID: 20979391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the Photoelectrochemical Response of DNA Biosensors Using Wrinkled Interfaces.
    Saha S; Chan Y; Soleymani L
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31178-31185. PubMed ID: 30192501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toehold enabling stem-loop inspired hemiduplex probe with enhanced sensitivity and sequence-specific detection of tumor DNA in serum.
    Yang F; Wang S; Zhang Y; Tang L; Jin D; Ning Y; Zhang GJ
    Biosens Bioelectron; 2016 Aug; 82():32-9. PubMed ID: 27040528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of one-to-one recognition triple Au nanoparticles DNA probe and its application in the electrochemical DNA biosensor.
    Zhong H; Lei X; Hun X; Zhang S
    Chem Commun (Camb); 2009 Dec; (45):6958-60. PubMed ID: 19904360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greatly extended storage stability of electrochemical DNA biosensors using ternary thiolated self-assembled monolayers.
    Kuralay F; Campuzano S; Wang J
    Talanta; 2012 Sep; 99():155-60. PubMed ID: 22967535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Sensitivity of Intramolecular Strand Displacement Based on Localization of Probes.
    Shin SW; Ahn SY; Lim YT; Um SH
    Anal Chem; 2019 Dec; 91(23):14808-14811. PubMed ID: 31710463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation and Release of Recognition Probes Based on a Rigid Three-Dimensional DNA "Nanosafe-box" for Construction of a Electrochemical Biosensor.
    Qing M; Chen S; Xie S; Tang Y; Zhang J; Yuan R
    Anal Chem; 2020 Jan; 92(2):1811-1817. PubMed ID: 31804064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous Trends in Nucleic Acid-Based Electrochemical Biosensors with Nanoporous Gold Electrodes.
    Veselinovic J; Almashtoub S; Seker E
    Anal Chem; 2019 Sep; 91(18):11923-11931. PubMed ID: 31429540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrochemical DNA sensor without electrode pre-modification.
    Hong N; Cheng L; Wei B; Chen C; He LL; Kong D; Ceng J; Cui HF; Fan H
    Biosens Bioelectron; 2017 May; 91():110-114. PubMed ID: 28011414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilely prepared low-density DNA monolayer-based electrochemical biosensor with high detection performance in human serum.
    Chen J; Ye C; Liu Z; Yang L; Liu A; Zhong G; Peng H; Lin X
    Anal Bioanal Chem; 2019 Apr; 411(10):2101-2109. PubMed ID: 30790017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free electrochemical DNA sensing with a one-target-multitriggered hybridization chain reaction strategy.
    Zhu Z; Lei J; Liu L; Ju H
    Analyst; 2013 Oct; 138(20):5995-6000. PubMed ID: 23951569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Analysis Using an Electrochemical DNA Biosensor with Poly-Adenine-Mediated DNA Self-Assembly.
    Li L; Wang L; Xu Q; Xu L; Liang W; Li Y; Ding M; Aldalbahi A; Ge Z; Wang L; Yan J; Lu N; Li J; Wen Y; Liu G
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6895-6903. PubMed ID: 29383931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.