BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1138 related articles for article (PubMed ID: 32581081)

  • 1. Rampant C→U Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories.
    Simmonds P
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32581081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ancestral origin, antigenic resemblance and epidemiological insights of novel coronavirus (SARS-CoV-2): Global burden and Bangladesh perspective.
    Uddin MB; Hasan M; Harun-Al-Rashid A; Ahsan MI; Imran MAS; Ahmed SSU
    Infect Genet Evol; 2020 Oct; 84():104440. PubMed ID: 32622082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronavirus genomes carry the signatures of their habitats.
    Wei Y; Silke JR; Aris P; Xia X
    PLoS One; 2020; 15(12):e0244025. PubMed ID: 33351847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential APOBEC-mediated RNA editing of the genomes of SARS-CoV-2 and other coronaviruses and its impact on their longer term evolution.
    Ratcliff J; Simmonds P
    Virology; 2021 Apr; 556():62-72. PubMed ID: 33545556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation Patterns of Human SARS-CoV-2 and Bat RaTG13 Coronavirus Genomes Are Strongly Biased Towards C>U Transitions, Indicating Rapid Evolution in Their Hosts.
    Matyášek R; Kovařík A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32646049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The substitution spectra of coronavirus genomes.
    Forni D; Cagliani R; Pontremoli C; Clerici M; Sironi M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34518866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point mutation bias in SARS-CoV-2 variants results in increased ability to stimulate inflammatory responses.
    Kosuge M; Furusawa-Nishii E; Ito K; Saito Y; Ogasawara K
    Sci Rep; 2020 Oct; 10(1):17766. PubMed ID: 33082451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2.
    Di Giorgio S; Martignano F; Torcia MG; Mattiuz G; Conticello SG
    Sci Adv; 2020 Jun; 6(25):eabb5813. PubMed ID: 32596474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes.
    Kandeel M; Ibrahim A; Fayez M; Al-Nazawi M
    J Med Virol; 2020 Jun; 92(6):660-666. PubMed ID: 32159237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive comparative genomic and microsatellite analysis of SARS, MERS, BAT-SARS, and COVID-19 coronaviruses.
    Rehman HA; Ramzan F; Basharat Z; Shakeel M; Khan MUG; Khan IA
    J Med Virol; 2021 Jul; 93(7):4382-4391. PubMed ID: 33782990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past.
    Shah VK; Firmal P; Alam A; Ganguly D; Chattopadhyay S
    Front Immunol; 2020; 11():1949. PubMed ID: 32849654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronaviruses and SARS-COV-2.
    Hasöksüz M; Kiliç S; Saraç F
    Turk J Med Sci; 2020 Apr; 50(SI-1):549-556. PubMed ID: 32293832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of Coronavirus and SARS-CoV-2.
    Malik YA
    Malays J Pathol; 2020 Apr; 42(1):3-11. PubMed ID: 32342926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pervasive RNA Secondary Structure in the Genomes of SARS-CoV-2 and Other Coronaviruses.
    Simmonds P
    mBio; 2020 Oct; 11(6):. PubMed ID: 33127861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2.
    Zhang XY; Huang HJ; Zhuang DL; Nasser MI; Yang MH; Zhu P; Zhao MY
    Infect Dis Poverty; 2020 Jul; 9(1):99. PubMed ID: 32690096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic.
    Klimczak LJ; Randall TA; Saini N; Li JL; Gordenin DA
    PLoS One; 2020; 15(10):e0237689. PubMed ID: 33006981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro virucidal activity of Echinaforce®, an Echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2.
    Signer J; Jonsdottir HR; Albrich WC; Strasser M; Züst R; Ryter S; Ackermann-Gäumann R; Lenz N; Siegrist D; Suter A; Schoop R; Engler OB
    Virol J; 2020 Sep; 17(1):136. PubMed ID: 32907596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility to SARS, MERS, and COVID-19 from animal health perspective.
    Gautam A; Kaphle K; Shrestha B; Phuyal S
    Open Vet J; 2020 Aug; 10(2):164-177. PubMed ID: 32821661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HTCC as a Polymeric Inhibitor of SARS-CoV-2 and MERS-CoV.
    Milewska A; Chi Y; Szczepanski A; Barreto-Duran E; Dabrowska A; Botwina P; Obloza M; Liu K; Liu D; Guo X; Ge Y; Li J; Cui L; Ochman M; Urlik M; Rodziewicz-Motowidlo S; Zhu F; Szczubialka K; Nowakowska M; Pyrc K
    J Virol; 2021 Jan; 95(4):. PubMed ID: 33219167
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Llanes A; Restrepo CM; Caballero Z; Rajeev S; Kennedy MA; Lleonart R
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.