These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32581678)

  • 1. Protracted Morphological Changes in the Corticospinal Tract Within the Cervical Spinal Cord After Intracerebral Hemorrhage in the Right Striatum of Mice.
    Ng ACK; Yao M; Cheng SY; Li J; Huang JD; Wu W; Leung GKK; Sun H
    Front Neurosci; 2020; 14():506. PubMed ID: 32581678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting NLRP3 inflammasome modulates gut microbiota, attenuates corticospinal tract injury and ameliorates neurobehavioral deficits after intracerebral hemorrhage in mice.
    Xiao L; Zheng H; Li J; Zeng M; He D; Liang J; Sun K; Luo Y; Li F; Ping B; Yuan W; Zhou H; Wang Q; Sun H
    Biomed Pharmacother; 2022 May; 149():112797. PubMed ID: 35279596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the proteoglycan receptor PTPσ promotes white matter integrity and functional recovery after intracerebral hemorrhage stroke in mice.
    Yao M; Fang J; Li J; Ng ACK; Liu J; Leung GKK; Song F; Zhang J; Chang C
    J Neuroinflammation; 2022 Aug; 19(1):207. PubMed ID: 35982473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of White Matter Injury and Promising Therapeutic Strategies of MSCs After Intracerebral Hemorrhage.
    Li J; Xiao L; He D; Luo Y; Sun H
    Front Aging Neurosci; 2021; 13():632054. PubMed ID: 33927608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Spinal Transcriptome after Cortical Stroke: In Search of Molecular Factors Regulating Spontaneous Recovery in the Spinal Cord.
    Kaiser J; Maibach M; Salpeter I; Hagenbuch N; de Souza VBC; Robinson MD; Schwab ME
    J Neurosci; 2019 Jun; 39(24):4714-4726. PubMed ID: 30962276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothermia protects the integrity of corticospinal tracts and alleviates mitochondria injury after intracerebral hemorrhage in mice.
    Sun E; Lu S; Yang C; Li Z; Qian Y; Chen Y; Chen S; Ma X; Deng Y; Shan X; Chen B
    Exp Neurol; 2024 Jul; 377():114803. PubMed ID: 38679281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of an injured corticospinal tract during a critical period in a patient with intracerebral hemorrhage.
    Kwon HG; Choi BY; Chang CH; Kim SH; Jung YJ; Jang SH
    NeuroRehabilitation; 2013; 32(1):27-32. PubMed ID: 23422456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the corticospinal tract within the porcine spinal cord: Implications for experimental modeling of traumatic spinal cord injury.
    Leonard AV; Menendez JY; Pat BM; Hadley MN; Floyd CL
    Neurosci Lett; 2017 May; 648():1-7. PubMed ID: 28323088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nurr1 overexpression in the primary motor cortex alleviates motor dysfunction induced by intracerebral hemorrhage in the striatum in mice.
    Kinoshita K; Motomura K; Ushida K; Hirata Y; Konno A; Hirai H; Kotani S; Hitora-Imamura N; Kurauchi Y; Seki T; Katsuki H
    Neurotherapeutics; 2024 May; 21(4):e00370. PubMed ID: 38704311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion-weighted magnetic resonance imaging in the early evaluation of corticospinal tract injury to predict functional motor outcome in patients with deep intracerebral hemorrhage.
    Karibe H; Shimizu H; Tominaga T; Koshu K; Yoshimoto T
    J Neurosurg; 2000 Jan; 92(1):58-63. PubMed ID: 10616083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional reconstruction of corticospinal tract using one-photon confocal microscopy acquisition allows detection of axonal disruption in spinal cord injury.
    Quintá HR; Pasquini LA; Pasquini JM
    J Neurochem; 2015 Apr; 133(1):113-24. PubMed ID: 25565274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience.
    Faraji AH; Abhinav K; Jarbo K; Yeh FC; Shin SS; Pathak S; Hirsch BE; Schneider W; Fernandez-Miranda JC; Friedlander RM
    J Neurosurg; 2015 Nov; 123(5):1133-44. PubMed ID: 26047420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor outcome of deep intracerebral haemorrhage in diffusion tensor imaging: comparison of data from different locations along the corticospinal tract.
    Cheng CY; Hsu CY; Huang YC; Tsai YH; Hsu HT; Yang WH; Lin HC; Wang TC; Cheng WC; Yang JT; Lee TC; Lee MH
    Neurol Res; 2015 Sep; 37(9):774-81. PubMed ID: 26003992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury.
    Omoto S; Ueno M; Mochio S; Yamashita T
    Neurosci Res; 2011 Mar; 69(3):187-95. PubMed ID: 21147179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal development of the ipsilateral corticospinal component in rat spinal cord: a light and electron microscopic anterograde HRP study.
    Joosten EA; Schuitman RL; Vermelis ME; Dederen PJ
    J Comp Neurol; 1992 Dec; 326(1):133-46. PubMed ID: 1479066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord.
    Jayaprakash N; Wang Z; Hoeynck B; Krueger N; Kramer A; Balle E; Wheeler DS; Wheeler RA; Blackmore MG
    J Neurosci; 2016 May; 36(21):5877-90. PubMed ID: 27225775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury.
    Martin JH
    Neural Regen Res; 2016 Sep; 11(9):1389-1391. PubMed ID: 27857728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.