BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32581719)

  • 1. A Novel Major Output Target for Pheromone-Sensitive Projection Neurons in Male Moths.
    Chu X; Heinze S; Ian E; Berg BG
    Front Cell Neurosci; 2020; 14():147. PubMed ID: 32581719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moth pheromone-selective projection neurons with cell bodies in the antennal lobe lateral cluster exhibit diverse morphological and neurophysiological characteristics.
    Lee SG; Celestino CF; Stagg J; Kleineidam C; Vickers NJ
    J Comp Neurol; 2019 May; 527(9):1443-1460. PubMed ID: 30723902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology and morphology of projection neurons in the antennal lobe of the male moth Manduca sexta.
    Kanzaki R; Arbas EA; Strausfeld NJ; Hildebrand JG
    J Comp Physiol A; 1989 Aug; 165(4):427-53. PubMed ID: 2769606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal tuning of odor responses in pheromone-responsive projection neurons in the brain of the sphinx moth Manduca sexta.
    Heinbockel T; Christensen TA; Hildebrand JG
    J Comp Neurol; 1999 Jun; 409(1):1-12. PubMed ID: 10363707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta.
    Christensen TA; Hildebrand JG
    J Comp Physiol A; 1987 May; 160(5):553-69. PubMed ID: 3612589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of pheromones, interspecific signals, and plant odors in higher olfactory centers; mapping physiologically identified antennal-lobe projection neurons in the male heliothine moth.
    Zhao XC; Kvello P; Løfaldli BB; Lillevoll SC; Mustaparta H; Berg BG
    Front Syst Neurosci; 2014; 8():186. PubMed ID: 25346663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial odor discrimination in the brain: attractive and antagonist odor blends are represented in distinct combinations of uniquely identifiable glomeruli.
    Vickers NJ; Christensen TA; Hildebrand JG
    J Comp Neurol; 1998 Oct; 400(1):35-56. PubMed ID: 9762865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally distinct subdivisions of the macroglomerular complex in the antennal lobe of the male sphinx moth Manduca sexta.
    Hansson BS; Christensen TA; Hildebrand JG
    J Comp Neurol; 1991 Oct; 312(2):264-78. PubMed ID: 1748732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Background of a Volatile Plant Compound Alters Neural and Behavioral Responses to the Sex Pheromone Blend in a Moth.
    Dupuy F; Rouyar A; Deisig N; Bourgeois T; Limousin D; Wycke MA; Anton S; Renou M
    Front Physiol; 2017; 8():79. PubMed ID: 28239358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrangement of output information from the 3 macroglomerular units in the heliothine moth Helicoverpa assulta: morphological and physiological features of male-specific projection neurons.
    Zhao XC; Berg BG
    Chem Senses; 2010 Jul; 35(6):511-21. PubMed ID: 20457569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projections to higher olfactory centers from subdivisions of the antennal lobe macroglomerular complex of the male silkmoth.
    Kanzaki R; Soo K; Seki Y; Wada S
    Chem Senses; 2003 Feb; 28(2):113-30. PubMed ID: 12588734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of the sex pheromone signal in the noctuid moth Agrotis ipsilon: from peripheral input to antennal lobe output.
    Jarriault D; Gadenne C; Lucas P; Rospars JP; Anton S
    Chem Senses; 2010 Oct; 35(8):705-15. PubMed ID: 20601375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central mechanisms of pheromone information processing.
    Mustaparta H
    Chem Senses; 1996 Apr; 21(2):269-75. PubMed ID: 8670705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional map of the macroglomerular complex of male Helicoverpa armigera.
    Liu XL; Chu X; Sun LL; Wang YN; Xie GY; Chen WB; Liu Y; Berg BG; An SH; Wang GR; Yin XM; Zhao XC
    Insect Sci; 2023 Feb; 30(1):109-124. PubMed ID: 35608046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Hydroxy-tryptamine modulates pheromone-evoked local field potentials in the macroglomerular complex of the sphinx moth Manduca sexta.
    Kloppenburg P; Heinbockel T
    J Exp Biol; 2000 Jun; 203(Pt 11):1701-9. PubMed ID: 10804160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected plant odor responses in a moth pheromone system.
    Rouyar A; Deisig N; Dupuy F; Limousin D; Wycke MA; Renou M; Anton S
    Front Physiol; 2015; 6():148. PubMed ID: 26029117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combinatorial model of odor discrimination using a small array of contiguous, chemically defined glomeruli.
    Vickers NJ; Christensen TA
    Ann N Y Acad Sci; 1998 Nov; 855():514-6. PubMed ID: 10049231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct protocerebral neuropils associated with attractive and aversive female-produced odorants in the male moth brain.
    Kymre JH; Liu X; Ian E; Berge CN; Wang G; Berg BG; Zhao X; Chu X
    Elife; 2021 May; 10():. PubMed ID: 33988500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual Neurons Confined to Distinct Antennal-Lobe Tracts in the Heliothine Moth: Morphological Characteristics and Global Projection Patterns.
    Ian E; Zhao XC; Lande A; Berg BG
    Front Neuroanat; 2016; 10():101. PubMed ID: 27822181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antennal-lobe tracts in the noctuid moth, Heliothis virescens: new anatomical findings.
    Ian E; Berg A; Lillevoll SC; Berg BG
    Cell Tissue Res; 2016 Oct; 366(1):23-35. PubMed ID: 27352608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.