These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32581839)

  • 1. Theoretical Bases for the Role of Red Blood Cell Shape in the Regulation of Its Volume.
    Svetina S
    Front Physiol; 2020; 11():544. PubMed ID: 32581839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Model of Piezo1-Based Regulation of Red Blood Cell Volume.
    Svetina S; Švelc Kebe T; Božič B
    Biophys J; 2019 Jan; 116(1):151-164. PubMed ID: 30580922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane Localization of Piezo1 in the Context of Its Role in the Regulation of Red Blood Cell Volume.
    Božič B; Svetina S
    Front Physiol; 2022; 13():879038. PubMed ID: 35669579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezo1 links mechanical forces to red blood cell volume.
    Cahalan SM; Lukacs V; Ranade SS; Chien S; Bandell M; Patapoutian A
    Elife; 2015 May; 4():. PubMed ID: 26001274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface model of the human red blood cell simulating changes in membrane curvature under strain.
    Kuchel PW; Cox CD; Daners D; Shishmarev D; Galvosas P
    Sci Rep; 2021 Jul; 11(1):13712. PubMed ID: 34211012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hereditary Xerocytosis: Differential Behavior of PIEZO1 Mutations in the N-Terminal Extracellular Domain Between Red Blood Cells and HEK Cells.
    Yamaguchi Y; Allegrini B; Rapetti-Mauss R; Picard V; Garçon L; Kohl P; Soriani O; Peyronnet R; Guizouarn H
    Front Physiol; 2021; 12():736585. PubMed ID: 34737711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Up-down biphasic volume response of human red blood cells to PIEZO1 activation during capillary transits.
    Rogers S; Lew VL
    PLoS Comput Biol; 2021 Mar; 17(3):e1008706. PubMed ID: 33657092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels.
    Lew VL; Tiffert T
    Front Physiol; 2017; 8():977. PubMed ID: 29311949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic ion channel interactions in red cells of patients with Gárdos channelopathy.
    Jansen J; Qiao M; Hertz L; Wang X; Fermo E; Zaninoni A; Colombatti R; Bernhardt I; Bianchi P; Kaestner L
    Blood Adv; 2021 Sep; 5(17):3303-3308. PubMed ID: 34468723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Gardos Hereditary Xerocytosis Diagnosis in 8 Families Using Reticulocyte Indices.
    Picard V; Guitton C; Mansour-Hendili L; Jondeau B; Bendélac L; Denguir M; Demagny J; Proulle V; Galactéros F; Garçon L
    Front Physiol; 2020; 11():602109. PubMed ID: 33519508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells.
    Kats LM; Proellocks NI; Buckingham DW; Blanc L; Hale J; Guo X; Pei X; Herrmann S; Hanssen EG; Coppel RL; Mohandas N; An X; Cooke BM
    Biochim Biophys Acta; 2015 Jul; 1848(7):1619-1628. PubMed ID: 25883090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.
    Smith AS; Nowak RB; Zhou S; Giannetto M; Gokhin DS; Papoin J; Ghiran IC; Blanc L; Wan J; Fowler VM
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4377-E4385. PubMed ID: 29610350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of spectrin network elasticity on the shapes of erythrocyte doublets.
    Hoore M; Yaya F; Podgorski T; Wagner C; Gompper G; Fedosov DA
    Soft Matter; 2018 Aug; 14(30):6278-6289. PubMed ID: 30014074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights on hereditary erythrocyte membrane defects.
    Andolfo I; Russo R; Gambale A; Iolascon A
    Haematologica; 2016 Nov; 101(11):1284-1294. PubMed ID: 27756835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies.
    Geekiyanage NM; Balanant MA; Sauret E; Saha S; Flower R; Lim CT; Gu Y
    PLoS One; 2019; 14(4):e0215447. PubMed ID: 31002688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte.
    Li J; Dao M; Lim CT; Suresh S
    Biophys J; 2005 May; 88(5):3707-19. PubMed ID: 15749778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the interaction between Lu/BCAM and the spectrin-based membrane skeleton in the increased adhesion of hereditary spherocytosis red cells to laminin.
    Gauthier E; El Nemer W; Wautier MP; Renaud O; Tchernia G; Delaunay J; Le Van Kim C; Colin Y
    Br J Haematol; 2010 Feb; 148(3):456-65. PubMed ID: 20092464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Enhanced Spring-Particle Model for Red Blood Cell Structural Mechanics: Application to the Stomatocyte-Discocyte-Echinocyte Transformation.
    Chen M; Boyle FJ
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28813551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Relationship and Functional Relevance of Three Lipid Domain Populations at the Erythrocyte Surface.
    Conrard L; Stommen A; Cloos AS; Steinkühler J; Dimova R; Pollet H; Tyteca D
    Cell Physiol Biochem; 2018; 51(4):1544-1565. PubMed ID: 30497064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.