These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32582407)

  • 1. USING MACHINE LEARNING TO MITIGATE THE EFFECTS OF REVERBERATION AND NOISE IN COCHLEAR IMPLANTS.
    Chu KM; Throckmorton CS; Collins LM; Mainsah BO
    Proc Meet Acoust; 2018 May; 33(1):. PubMed ID: 32582407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. USING AUTOMATIC SPEECH RECOGNITION AND SPEECH SYNTHESIS TO IMPROVE THE INTELLIGIBILITY OF COCHLEAR IMPLANT USERS IN REVERBERANT LISTENING ENVIRONMENTS.
    Chu K; Collins L; Mainsah B
    Proc IEEE Int Conf Acoust Speech Signal Process; 2020 May; 2020():6929-6933. PubMed ID: 33078056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions Between Digital Noise Reduction and Reverberation: Acoustic and Behavioral Effects.
    Reinhart P; Zahorik P; Souza P
    J Am Acad Audiol; 2020 Jan; 31(1):17-29. PubMed ID: 31267958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovering speech intelligibility with deep learning and multiple microphones in noisy-reverberant situations for people using cochlear implants.
    Gaultier C; Goehring T
    J Acoust Soc Am; 2024 Jun; 155(6):3833-3847. PubMed ID: 38884525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning based segregation algorithm to increase speech intelligibility for hearing-impaired listeners in reverberant-noisy conditions.
    Zhao Y; Wang D; Johnson EM; Healy EW
    J Acoust Soc Am; 2018 Sep; 144(3):1627. PubMed ID: 30424625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Objective intelligibility measurement of reverberant vocoded speech for normal-hearing listeners: Towards facilitating the development of speech enhancement algorithms for cochlear implants.
    Shahidi LK; Collins LM; Mainsah BO
    J Acoust Soc Am; 2024 Mar; 155(3):2151-2168. PubMed ID: 38501923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of reverberation and noise on speech intelligibility in normal-hearing and aided hearing-impaired listeners.
    Xia J; Xu B; Pentony S; Xu J; Swaminathan J
    J Acoust Soc Am; 2018 Mar; 143(3):1523. PubMed ID: 29604671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing the effects of reverberation and of noise on speech recognition in simulated electric-acoustic listening.
    Helms Tillery K; Brown CA; Bacon SP
    J Acoust Soc Am; 2012 Jan; 131(1):416-23. PubMed ID: 22280603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of reverberation on speech recognition in stationary and modulated noise by school-aged children and young adults.
    Wróblewski M; Lewis DE; Valente DL; Stelmachowicz PG
    Ear Hear; 2012; 33(6):731-44. PubMed ID: 22732772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of audiovisual ceiling performance on the relationship between reverberation and directional benefit: perception and prediction.
    Wu YH; Bentler RA
    Ear Hear; 2012; 33(5):604-14. PubMed ID: 22677815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [On the effect of reverberation on speech intelligibility by cochlear implant listeners].
    Mühler R; Ziese M; Rostalski D; Verhey JL
    HNO; 2014 Jan; 62(1):35-40. PubMed ID: 24270967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of reverberant self- and overlap-masking on speech recognition in cochlear implant listeners.
    Desmond JM; Collins LM; Throckmorton CS
    J Acoust Soc Am; 2014 Jun; 135(6):EL304-10. PubMed ID: 24907838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of noise and reverberation on speech intelligibility for cochlear implant recipients in realistic sound environments.
    Badajoz-Davila J; Buchholz JM; Van-Hoesel R
    J Acoust Soc Am; 2020 May; 147(5):3538. PubMed ID: 32486825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter tuning of time-frequency masking algorithms for reverberant artifact removal within the cochlear implant stimulus.
    Shahidi LK; Collins LM; Mainsah BO
    Cochlear Implants Int; 2022 Nov; 23(6):309-316. PubMed ID: 35875863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prior exposure to a reverberant listening environment improves speech intelligibility in adult cochlear implant listeners.
    Srinivasan NK; Tobey EA; Loizou PC
    Cochlear Implants Int; 2016; 17(2):98-104. PubMed ID: 26843090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using channel-specific statistical models to detect reverberation in cochlear implant stimuli.
    Desmond JM; Collins LM; Throckmorton CS
    J Acoust Soc Am; 2013 Aug; 134(2):1112-20. PubMed ID: 23927111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning algorithm to increase intelligibility for hearing-impaired listeners in the presence of a competing talker and reverberation.
    Healy EW; Delfarah M; Johnson EM; Wang D
    J Acoust Soc Am; 2019 Mar; 145(3):1378. PubMed ID: 31067936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Different Acoustic Components on EEG-Based Auditory Attention Decoding in Noisy and Reverberant Conditions.
    Aroudi A; Mirkovic B; De Vos M; Doclo S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):652-663. PubMed ID: 30843845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A procedure for testing speech intelligibility in a virtual listening environment.
    Koehnke J; Besing JM
    Ear Hear; 1996 Jun; 17(3):211-7. PubMed ID: 8807263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceived listening effort and speech intelligibility in reverberation and noise for hearing-impaired listeners.
    Schepker H; Haeder K; Rennies J; Holube I
    Int J Audiol; 2016 Dec; 55(12):738-747. PubMed ID: 27627181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.