These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3258246)

  • 1. ATP causes retinal pericytes to contract in vitro.
    Das A; Frank RN; Weber ML; Kennedy A; Reidy CA; Mancini MA
    Exp Eye Res; 1988 Mar; 46(3):349-62. PubMed ID: 3258246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered endothelin-1 induced contraction and second messenger generation in bovine retinal microvascular pericytes cultured in high glucose medium.
    Chakravarthy U; McGinty A; McKillop J; Anderson P; Archer DB; Trimble ER
    Diabetologia; 1994 Jan; 37(1):36-42. PubMed ID: 8150228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of endothelin on cultured bovine retinal microvascular pericytes.
    Ramachandran E; Frank RN; Kennedy A
    Invest Ophthalmol Vis Sci; 1993 Mar; 34(3):586-95. PubMed ID: 8449678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin-induced hyperpolarization in retinal capillary pericytes.
    Berweck S; Thieme H; Lepple-Wienhues A; Helbig H; Wiederholt M
    Invest Ophthalmol Vis Sci; 1993 Nov; 34(12):3402-7. PubMed ID: 8225875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of CO2 on intracellular pH and contraction of retinal capillary pericytes.
    Chen Q; Anderson DR
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):643-51. PubMed ID: 9071218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine-induced relaxation of cultured bovine retinal pericytes.
    Matsugi T; Chen Q; Anderson DR
    Invest Ophthalmol Vis Sci; 1997 Dec; 38(13):2695-701. PubMed ID: 9418721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of endothelin 1 on the retinal microvascular pericyte.
    Chakravarthy U; Gardiner TA; Anderson P; Archer DB; Trimble ER
    Microvasc Res; 1992 May; 43(3):241-54. PubMed ID: 1321943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. F-actin polymerization contributes to pericyte contractility in retinal capillaries.
    Kureli G; Yilmaz-Ozcan S; Erdener SE; Donmez-Demir B; Yemisci M; Karatas H; Dalkara T
    Exp Neurol; 2020 Oct; 332():113392. PubMed ID: 32610106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contractile responses of cultured bovine retinal pericytes to angiotensin II.
    Matsugi T; Chen Q; Anderson DR
    Arch Ophthalmol; 1997 Oct; 115(10):1281-5. PubMed ID: 9338674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway.
    Haefliger IO; Zschauer A; Anderson DR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):991-7. PubMed ID: 7907321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin in cultured bovine retinal capillary pericytes: morphological and functional correlation.
    Chan LS; Li WY; Khatami M; Rockey JH
    Exp Eye Res; 1986 Jul; 43(1):41-54. PubMed ID: 2942415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of bovine retinal microvascular pericyte proliferation in vitro by adenosine.
    Jackson JA; Carlson EC
    Am J Physiol; 1992 Aug; 263(2 Pt 2):H634-40. PubMed ID: 1510160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina.
    Kawamura H; Sugiyama T; Wu DM; Kobayashi M; Yamanishi S; Katsumura K; Puro DG
    J Physiol; 2003 Sep; 551(Pt 3):787-99. PubMed ID: 12876212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glaucoma, capillaries and pericytes. 2. Identification and characterization of retinal pericytes in culture.
    Anderson DR; Davis EB
    Ophthalmologica; 1996; 210(5):263-8. PubMed ID: 8878208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors.
    Li Q; Puro DG
    Brain Res; 2001 Jul; 907(1-2):93-9. PubMed ID: 11430889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-coupled glucose transporter as a functional glucose sensor of retinal microvascular circulation.
    Wakisaka M; Kitazono T; Kato M; Nakamura U; Yoshioka M; Uchizono Y; Yoshinari M
    Circ Res; 2001 Jun; 88(11):1183-8. PubMed ID: 11397785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of CO2-induced relaxation of bovine retinal pericytes by angiotensin II.
    Matsugi T; Chen Q; Anderson DR
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):652-7. PubMed ID: 9071219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of pulsatile flow in controlling microvascular retinal endothelial and pericyte cell apoptosis and proliferation.
    Walshe TE; Connell P; Cryan L; Ferguson G; O'Brien C; Cahill PA
    Cardiovasc Res; 2011 Feb; 89(3):661-70. PubMed ID: 21030535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular protein glycation in cultured retinal capillary pericytes and endothelial cells exposed to high-glucose concentration.
    Chibber R; Molinatti PA; Kohner EM
    Cell Mol Biol (Noisy-le-grand); 1999 Feb; 45(1):47-57. PubMed ID: 10099839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile proteins in pericytes at the blood-brain and blood-retinal barriers.
    Bandopadhyay R; Orte C; Lawrenson JG; Reid AR; De Silva S; Allt G
    J Neurocytol; 2001 Jan; 30(1):35-44. PubMed ID: 11577244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.