These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32582654)

  • 1. A Bioinformatics Tool for the Prediction of DNA N6-Methyladenine Modifications Based on Feature Fusion and Optimization Protocol.
    Cai J; Wang D; Chen R; Niu Y; Ye X; Su R; Xiao G; Wei L
    Front Bioeng Biotechnol; 2020; 8():502. PubMed ID: 32582654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNN6mA: Improved DNA N6-methyladenine site prediction using Siamese network-based feature embedding.
    Yu X; Hu J; Zhang Y
    Comput Biol Med; 2023 Nov; 166():107533. PubMed ID: 37793205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M6AMRFS: Robust Prediction of N6-Methyladenosine Sites With Sequence-Based Features in Multiple Species.
    Qiang X; Chen H; Ye X; Su R; Wei L
    Front Genet; 2018; 9():495. PubMed ID: 30410501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PSAC-6mA: 6mA site identifier using self-attention capsule network based on sequence-positioning.
    Zhou Z; Xiao C; Yin J; She J; Duan H; Liu C; Fu X; Cui F; Qi Q; Zhang Z
    Comput Biol Med; 2024 Mar; 171():108129. PubMed ID: 38342046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ense-i6mA: Identification of DNA N6-methyl-adenine Sites Using XGB-RFE Feature Se-lection and Ensemble Machine Learning.
    Fan XQ; Lin B; Hu J; Guo ZY
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Jul; PP():. PubMed ID: 38949938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale DNA language model improves 6 mA binding sites prediction.
    Hou A; Luo H; Liu H; Luo L; Ding P
    Comput Biol Chem; 2024 Oct; 112():108129. PubMed ID: 39067351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SDM6A: A Web-Based Integrative Machine-Learning Framework for Predicting 6mA Sites in the Rice Genome.
    Basith S; Manavalan B; Shin TH; Lee G
    Mol Ther Nucleic Acids; 2019 Dec; 18():131-141. PubMed ID: 31542696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6mA-StackingCV: an improved stacking ensemble model for predicting DNA N6-methyladenine site.
    Huang G; Huang X; Luo W
    BioData Min; 2023 Nov; 16(1):34. PubMed ID: 38012796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SoftVoting6mA: An improved ensemble-based method for predicting DNA N6-methyladenine sites in cross-species genomes.
    Yin Z; Lyu J; Zhang G; Huang X; Ma Q; Jiang J
    Math Biosci Eng; 2024 Feb; 21(3):3798-3815. PubMed ID: 38549308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides.
    Wei L; Zhou C; Chen H; Song J; Su R
    Bioinformatics; 2018 Dec; 34(23):4007-4016. PubMed ID: 29868903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging the attention mechanism to improve the identification of DNA N6-methyladenine sites.
    Zhang Y; Liu Y; Xu J; Wang X; Peng X; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34459479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 6mA-RicePred: A Method for Identifying DNA
    Huang Q; Zhang J; Wei L; Guo F; Zou Q
    Front Plant Sci; 2020; 11():4. PubMed ID: 32076430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iDNA-MS: An Integrated Computational Tool for Detecting DNA Modification Sites in Multiple Genomes.
    Lv H; Dao FY; Zhang D; Guan ZX; Yang H; Su W; Liu ML; Ding H; Chen W; Lin H
    iScience; 2020 Apr; 23(4):100991. PubMed ID: 32240948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning based method for predicting DNA N6-methyladenosine sites.
    Han K; Wang J; Chu Y; Liao Q; Ding Y; Zheng D; Wan J; Guo X; Zou Q
    Methods; 2024 Oct; 230():91-98. PubMed ID: 39097179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. m6AGE: A Predictor for N6-Methyladenosine Sites Identification Utilizing Sequence Characteristics and Graph Embedding-Based Geometrical Information.
    Wang Y; Guo R; Huang L; Yang S; Hu X; He K
    Front Genet; 2021; 12():670852. PubMed ID: 34122525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CWLy-SVM: A support vector machine-based tool for identifying cell wall lytic enzymes.
    Meng C; Guo F; Zou Q
    Comput Biol Chem; 2020 Jun; 87():107304. PubMed ID: 32580129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MethSemble-6mA: an ensemble-based 6mA prediction server and its application on promoter region of LBD gene family in Poaceae.
    Sinha D; Dasmandal T; Paul K; Yeasin M; Bhattacharjee S; Murmu S; Mishra DC; Pal S; Rai A; Archak S
    Front Plant Sci; 2023; 14():1256186. PubMed ID: 37877081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective detection of N6-methyladenine in DNA
    Hong T; Yuan Y; Wang T; Ma J; Yao Q; Hua X; Xia Y; Zhou X
    Chem Sci; 2017 Jan; 8(1):200-205. PubMed ID: 28451166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ASCARIS: Positional feature annotation and protein structure-based representation of single amino acid variations.
    Cankara F; Doğan T
    Comput Struct Biotechnol J; 2023; 21():4743-4758. PubMed ID: 37822561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Hyperparameter Tuning in Machine Learning to Improve the Predictive Performance of Cross-Species N6-Methyladenosine Sites.
    Le NQK; Xu L
    ACS Omega; 2023 Oct; 8(42):39420-39426. PubMed ID: 37901522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.