These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32582883)

  • 1. Automated CT and MRI Liver Segmentation and Biometry Using a Generalized Convolutional Neural Network.
    Wang K; Mamidipalli A; Retson T; Bahrami N; Hasenstab K; Blansit K; Bass E; Delgado T; Cunha G; Middleton MS; Loomba R; Neuschwander-Tetri BA; Sirlin CB; Hsiao A;
    Radiol Artif Intell; 2019 Mar; 1(2):. PubMed ID: 32582883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channel width optimized neural networks for liver and vessel segmentation in liver iron quantification.
    Liu M; Vanguri R; Mutasa S; Ha R; Liu YC; Button T; Jambawalikar S
    Comput Biol Med; 2020 Jul; 122():103798. PubMed ID: 32658724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images.
    Zhao Y; Tang C; Cui B; Somasundaram A; Raspe J; Hu X; Holzapfel C; Junker D; Hauner H; Menze B; Wu M; Karampinos D
    Quant Imaging Med Surg; 2023 Jul; 13(7):4699-4715. PubMed ID: 37456284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.
    Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P
    Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks.
    Xue YP; Jang H; Byra M; Cai ZY; Wu M; Chang EY; Ma YJ; Du J
    Eur Radiol; 2021 Oct; 31(10):7653-7663. PubMed ID: 33783571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise whole liver automatic segmentation and quantification of PDFF and R2* on MR images.
    Jimenez-Pastor A; Alberich-Bayarri A; Lopez-Gonzalez R; Marti-Aguado D; França M; Bachmann RSM; Mazzucco J; Marti-Bonmati L
    Eur Radiol; 2021 Oct; 31(10):7876-7887. PubMed ID: 33768292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation.
    Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ
    Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Analysis of Common Factors Impacting Deep Learning Model Generalizability in Liver Segmentation.
    Konkel B; Macdonald J; Lafata K; Zaki IH; Bozdogan E; Chaudhry M; Wang Y; Janas G; Wiggins WF; Bashir MR
    Radiol Artif Intell; 2023 May; 5(3):e220080. PubMed ID: 37293348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches.
    Hostin MA; Ogier AC; Michel CP; Le Fur Y; Guye M; Attarian S; Fortanier E; Bellemare ME; Bendahan D
    J Magn Reson Imaging; 2023 Dec; 58(6):1826-1835. PubMed ID: 37025028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.
    Farrag NA; Lochbihler A; White JA; Ukwatta E
    Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi-Site, Multi-Vendor, and Multi-Label Dense U-Net.
    Fujiwara T; Berhane H; Scott MB; Englund EK; Schäfer M; Fonseca B; Berthusen A; Robinson JD; Rigsby CK; Browne LP; Markl M; Barker AJ
    J Magn Reson Imaging; 2022 Jun; 55(6):1666-1680. PubMed ID: 34792835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.
    Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE
    Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases.
    Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E
    Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI.
    Shapey J; Wang G; Dorent R; Dimitriadis A; Li W; Paddick I; Kitchen N; Bisdas S; Saeed SR; Ourselin S; Bradford R; Vercauteren T
    J Neurosurg; 2021 Jan; 134(1):171-179. PubMed ID: 31812137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Tumor Segmentation and Brain Tissue Extraction from Multiparametric MRI of Pediatric Brain Tumors: A Multi-Institutional Study.
    Kazerooni AF; Arif S; Madhogarhia R; Khalili N; Haldar D; Bagheri S; Familiar AM; Anderson H; Haldar S; Tu W; Kim MC; Viswanathan K; Muller S; Prados M; Kline C; Vidal L; Aboian M; Storm PB; Resnick AC; Ware JB; Vossough A; Davatzikos C; Nabavizadeh A
    medRxiv; 2023 Jan; ():. PubMed ID: 36711966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Segmentation of Midbrain Structures in High-Resolution Susceptibility Maps Based on Convolutional Neural Network and Transfer Learning.
    Zhao W; Wang Y; Zhou F; Li G; Wang Z; Zhong H; Song Y; Gillen KM; Wang Y; Yang G; Li J
    Front Neurosci; 2022; 16():801618. PubMed ID: 35221900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.