BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 32583135)

  • 41. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing.
    Manghwar H; Lindsey K; Zhang X; Jin S
    Trends Plant Sci; 2019 Dec; 24(12):1102-1125. PubMed ID: 31727474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology.
    Hashemi A
    Curr Gene Ther; 2018; 18(2):115-124. PubMed ID: 29473500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR/Cas9-Mediated Genome Engineering of Primary Human B Cells.
    Laoharawee K; Johnson MJ; Moriarity BS
    Methods Mol Biol; 2020; 2115():435-444. PubMed ID: 32006415
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability.
    Martínez V; Lauritsen I; Hobel T; Li S; Nielsen AT; Nørholm MHH
    Nucleic Acids Res; 2017 Nov; 45(20):e171. PubMed ID: 28981713
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRISPR/Cas-based genome engineering in natural product discovery.
    Tong Y; Weber T; Lee SY
    Nat Prod Rep; 2019 Sep; 36(9):1262-1280. PubMed ID: 30548045
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 52. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules.
    Singh R; Chandel S; Ghosh A; Dey D; Chakravarti R; Roy S; Ravichandiran V; Ghosh D
    Mol Biotechnol; 2021 Jun; 63(6):459-476. PubMed ID: 33774733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides.
    Schultz JC; Cao M; Zhao H
    Biotechnol Bioeng; 2019 Aug; 116(8):2103-2109. PubMed ID: 31038202
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy biotechnology in the CRISPR-Cas9 era.
    Estrela R; Cate JH
    Curr Opin Biotechnol; 2016 Apr; 38():79-84. PubMed ID: 26874259
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Small molecule regulated sgRNAs enable control of genome editing in E. coli by Cas9.
    Iwasaki RS; Ozdilek BA; Garst AD; Choudhury A; Batey RT
    Nat Commun; 2020 Mar; 11(1):1394. PubMed ID: 32170140
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR-based metabolic editing: Next-generation metabolic engineering in plants.
    Sabzehzari M; Zeinali M; Naghavi MR
    Gene; 2020 Oct; 759():144993. PubMed ID: 32717311
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.