These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32583628)
1. Traces matter: Targeted optimization of monoclonal antibody N-glycosylation based on/by implementing automated high-throughput trace element screening. Markert S; Torkler S; Hohmann K; Popp O Biotechnol Prog; 2020 Nov; 36(6):e3042. PubMed ID: 32583628 [TBL] [Abstract][Full Text] [Related]
2. Trace metal optimization in CHO cell culture through statistical design of experiments. Polanco A; Liang G; Park S; Wang Y; Graham RJ; Yoon S Biotechnol Prog; 2023; 39(6):e3368. PubMed ID: 37497992 [TBL] [Abstract][Full Text] [Related]
3. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Karst DJ; Scibona E; Serra E; Bielser JM; Souquet J; Stettler M; Broly H; Soos M; Morbidelli M; Villiger TK Biotechnol Bioeng; 2017 Sep; 114(9):1978-1990. PubMed ID: 28409838 [TBL] [Abstract][Full Text] [Related]
4. Parallel experimental design and multivariate analysis provides efficient screening of cell culture media supplements to improve biosimilar product quality. Brühlmann D; Sokolov M; Butté A; Sauer M; Hemberger J; Souquet J; Broly H; Jordan M Biotechnol Bioeng; 2017 Jul; 114(7):1448-1458. PubMed ID: 28197999 [TBL] [Abstract][Full Text] [Related]
5. Scale-dependent manganese leaching from stainless steel impacts terminal galactosylation in monoclonal antibodies. Williamson J; Miller J; McLaughlin J; Combs R; Chu C Biotechnol Prog; 2018 Sep; 34(5):1290-1297. PubMed ID: 29885096 [TBL] [Abstract][Full Text] [Related]
6. An ICP-MS platform for metal content assessment of cell culture media and evaluation of spikes in metal concentration on the quality of an IgG3:κ monoclonal antibody during production. Mohammad A; Agarabi C; Rogstad S; DiCioccio E; Brorson K; Ashraf M; Faustino PJ; Madhavarao CN J Pharm Biomed Anal; 2019 Jan; 162():91-100. PubMed ID: 30227357 [TBL] [Abstract][Full Text] [Related]
7. Purification and Analytics of a Monoclonal Antibody from Chinese Hamster Ovary Cells Using an Automated Microbioreactor System. Velugula-Yellela SR; Powers DN; Angart P; Faustino A; Faison T; Kohnhorst C; Fratz-Berilla EJ; Agarabi CD J Vis Exp; 2019 May; (147):. PubMed ID: 31107445 [TBL] [Abstract][Full Text] [Related]
8. Consequences of trace metal variability and supplementation on Chinese hamster ovary (CHO) cell culture performance: A review of key mechanisms and considerations. Graham RJ; Bhatia H; Yoon S Biotechnol Bioeng; 2019 Dec; 116(12):3446-3456. PubMed ID: 31403183 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive manipulation of glycosylation profiles across development scales. Loebrich S; Clark E; Ladd K; Takahashi S; Brousseau A; Kitchener S; Herbst R; Ryll T MAbs; 2019; 11(2):335-349. PubMed ID: 30252592 [TBL] [Abstract][Full Text] [Related]
10. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization. Markert S; Joeris K Biotechnol Bioeng; 2017 Jan; 114(1):113-121. PubMed ID: 27399304 [TBL] [Abstract][Full Text] [Related]
11. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Grainger RK; James DC Biotechnol Bioeng; 2013 Nov; 110(11):2970-83. PubMed ID: 23737295 [TBL] [Abstract][Full Text] [Related]
12. Scale-down model qualification of ambr® 250 high-throughput mini-bioreactor system for two commercial-scale mAb processes. Manahan M; Nelson M; Cacciatore JJ; Weng J; Xu S; Pollard J Biotechnol Prog; 2019 Nov; 35(6):e2870. PubMed ID: 31207168 [TBL] [Abstract][Full Text] [Related]
13. Sustaining an efficient and effective CHO cell line development platform by incorporation of 24-deep well plate screening and multivariate analysis. Mora A; Zhang SS; Carson G; Nabiswa B; Hossler P; Yoon S Biotechnol Prog; 2018 Jan; 34(1):175-186. PubMed ID: 29150912 [TBL] [Abstract][Full Text] [Related]
14. Identification of manipulated variables for a glycosylation control strategy. St Amand MM; Radhakrishnan D; Robinson AS; Ogunnaike BA Biotechnol Bioeng; 2014 Oct; 111(10):1957-70. PubMed ID: 24728980 [TBL] [Abstract][Full Text] [Related]
15. Bioreactor process parameter screening utilizing a Plackett-Burman design for a model monoclonal antibody. Agarabi CD; Schiel JE; Lute SC; Chavez BK; Boyne MT; Brorson KA; Khan M; Read EK J Pharm Sci; 2015 Jun; 104(6):1919-1928. PubMed ID: 25762022 [TBL] [Abstract][Full Text] [Related]
16. Process Optimization using High Throughput Automated Micro-Bioreactors in Chinese Hamster Ovary Cell Cultivation. Nagraik T; Gonzalez Salcedo A; Solle D; Scheper T J Vis Exp; 2020 May; (159):. PubMed ID: 32478715 [TBL] [Abstract][Full Text] [Related]
17. Impact of media and antifoam selection on monoclonal antibody production and quality using a high throughput micro-bioreactor system. Velugula-Yellela SR; Williams A; Trunfio N; Hsu CJ; Chavez B; Yoon S; Agarabi C Biotechnol Prog; 2018 Jan; 34(1):262-270. PubMed ID: 29086492 [TBL] [Abstract][Full Text] [Related]
18. Identifying a robust design space for glycosylation during monoclonal antibody production. St Amand MM; Hayes J; Radhakrishnan D; Fernandez J; Meyer B; Robinson AS; Ogunnaike BA Biotechnol Prog; 2016 Sep; 32(5):1149-1162. PubMed ID: 27273898 [TBL] [Abstract][Full Text] [Related]
19. High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation. Villiger TK; Steinhoff RF; Ivarsson M; Solacroup T; Stettler M; Broly H; Krismer J; Pabst M; Zenobi R; Morbidelli M; Soos M J Biotechnol; 2016 Jul; 229():3-12. PubMed ID: 27131894 [TBL] [Abstract][Full Text] [Related]
20. A high-throughput microchip-based glycan screening assay for antibody cell culture samples. Primack J; Flynn GC; Pan H Electrophoresis; 2011 May; 32(10):1129-32. PubMed ID: 21500212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]