These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32583660)

  • 1. Light-Sensitive Material Structure-Electrical Performance Relationship for Optical Memory Transistors Incorporating Photochromic Dihetarylethenes.
    Obrezkov FA; Dashitsyrenova DD; Lvov AG; Volyniuk DY; Shirinian VZ; Stadler P; Grazulevicius JV; Sariciftci NS; Aldoshin SM; Krayushkin MM; Troshin PA
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32987-32993. PubMed ID: 32583660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoswitchable organic field-effect transistors and memory elements comprising an interfacial photochromic layer.
    Frolova LA; Troshin PA; Susarova DK; Kulikov AV; Sanina NA; Aldoshin SM
    Chem Commun (Camb); 2015 Apr; 51(28):6130-2. PubMed ID: 25748821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Nonvolatile Organic Optical Memory Using Self-Assembled Monolayers of Porphyrin-Fullerene Dyads.
    Frolova LA; Furmansky Y; Shestakov AF; Emelianov NA; Liddell PA; Gust D; Visoly-Fisher I; Troshin PA
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15461-15467. PubMed ID: 35343673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Photoswitchable Dihetarylethenes Exhibiting Fluorescence.
    Mahesh K; Padmavathi DA
    J Fluoresc; 2020 Jan; 30(1):35-40. PubMed ID: 31802309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Photoactive Hybrid Bilayer Dielectric for Flexible Nonvolatile Organic Memory Transistors.
    Chen H; Cheng N; Ma W; Li M; Hu S; Gu L; Meng S; Guo X
    ACS Nano; 2016 Jan; 10(1):436-45. PubMed ID: 26673624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically and electrically driven organic thin film transistors with diarylethene photochromic channel layers.
    Hayakawa R; Higashiguchi K; Matsuda K; Chikyow T; Wakayama Y
    ACS Appl Mater Interfaces; 2013 May; 5(9):3625-30. PubMed ID: 23548076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in photoactive organic field-effect transistors.
    Wakayama Y; Hayakawa R; Seo HS
    Sci Technol Adv Mater; 2014 Apr; 15(2):024202. PubMed ID: 27877655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 25th anniversary article: organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices.
    Orgiu E; Samorì P
    Adv Mater; 2014 Mar; 26(12):1827-45. PubMed ID: 24554562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport.
    Di CA; Shen H; Zhang F; Zhu D
    Acc Chem Res; 2019 Apr; 52(4):1113-1124. PubMed ID: 30908012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocontrollable Modulation of Frontier Molecular Orbital Energy Levels of Cyclopentenone-Based Diarylethenes.
    Lvov AG; Herder M; Grubert L; Hecht S; Shirinian VZ
    J Phys Chem A; 2021 May; 125(17):3681-3688. PubMed ID: 33885299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers.
    Jeong YJ; Yun DJ; Kim SH; Jang J; Park CE
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11759-11769. PubMed ID: 28287701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing organic field effect transistors in situ during operation using SFG.
    Ye H; Abu-Akeel A; Huang J; Katz HE; Gracias DH
    J Am Chem Soc; 2006 May; 128(20):6528-9. PubMed ID: 16704231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.
    Zhang C; Chen P; Hu W
    Small; 2016 Mar; 12(10):1252-94. PubMed ID: 26833896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoresponsive Dithienylethene-Containing Tris(8-hydroxyquinolinato)aluminum(III) Complexes with Photocontrollable Electron-Transporting Properties for Solution-Processable Optical and Organic Resistive Memory Devices.
    Wong CL; Ng M; Hong EY; Wong YC; Chan MY; Yam VW
    J Am Chem Soc; 2020 Jul; 142(28):12193-12206. PubMed ID: 32614174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices.
    Gemayel ME; Börjesson K; Herder M; Duong DT; Hutchison JA; Ruzié C; Schweicher G; Salleo A; Geerts Y; Hecht S; Orgiu E; Samorì P
    Nat Commun; 2015 Mar; 6():6330. PubMed ID: 25739864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochromic organic-inorganic hybrid materials.
    Pardo R; Zayat M; Levy D
    Chem Soc Rev; 2011 Feb; 40(2):672-87. PubMed ID: 21229130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-Processed Organic Field-Effect Transistors with High Performance and Stability on Paper Substrates.
    Raghuwanshi V; Bharti D; Mahato AK; Varun I; Tiwari SP
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8357-8364. PubMed ID: 30701957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance optical memory transistors based on a novel organic semiconductor with nanosprouts.
    Zheng L; Li J; Wang Y; Gao X; Yuan K; Yu X; Ren X; Zhang X; Hu W
    Nanoscale; 2019 Apr; 11(15):7117-7122. PubMed ID: 30919870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete Suppression of Bias-Induced Threshold Voltage Shift below 273 K in Solution-Processed High-Performance Organic Transistors.
    Kettner M; Zhou M; Brill J; Blom PWM; Weitz RT
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35449-35454. PubMed ID: 30251831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.