These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 32584026)

  • 1. Dielectric Confinement and Excitonic Effects in Two-Dimensional Nanoplatelets.
    Ji B; Rabani E; Efros AL; Vaxenburg R; Ashkenazi O; Azulay D; Banin U; Millo O
    ACS Nano; 2020 Jul; 14(7):8257-8265. PubMed ID: 32584026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the In-Plane Exciton Radius in 2D CdSe Nanoplatelets
    Brumberg A; Harvey SM; Philbin JP; Diroll BT; Lee B; Crooker SA; Wasielewski MR; Rabani E; Schaller RD
    ACS Nano; 2019 Aug; 13(8):8589-8596. PubMed ID: 31251582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton Binding Energy in CdSe Nanoplatelets Measured by One- and Two-Photon Absorption.
    Shornikova EV; Yakovlev DR; Gippius NA; Qiang G; Dubertret B; Khan AH; Di Giacomo A; Moreels I; Bayer M
    Nano Lett; 2021 Dec; 21(24):10525-10531. PubMed ID: 34874734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent exciton substructure in CdSe nanoplatelets and its relation to photoluminescence dynamics.
    Specht JF; Scott R; Corona Castro M; Christodoulou S; Bertrand GHV; Prudnikau AV; Antanovich A; Siebbeles LDA; Owschimikow N; Moreels I; Artemyev M; Woggon U; Achtstein AW; Richter M
    Nanoscale; 2019 Jul; 11(25):12230-12241. PubMed ID: 31204756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Van Hove Singularities and Trap States in Two-Dimensional CdSe Nanoplatelets.
    Peric N; Lambert Y; Singh S; Khan AH; Franchina Vergel NA; Deresmes D; Berthe M; Hens Z; Moreels I; Delerue C; Grandidier B; Biadala L
    Nano Lett; 2021 Feb; 21(4):1702-1708. PubMed ID: 33544602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the Structure-Property Relationships of Quasi-Two-Dimensional Semiconductor Nanoplatelets.
    Greenwood AR; Mazzotti S; Norris DJ; Galli G
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(8):4820-4827. PubMed ID: 38230251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.
    Inamdar SN; Ingole PP; Haram SK
    Chemphyschem; 2008 Dec; 9(17):2574-9. PubMed ID: 18956405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.
    Wang T; Vaxenburg R; Liu W; Rupich SM; Lifshitz E; Efros AL; Talapin DV; Sibener SJ
    ACS Nano; 2015 Jan; 9(1):725-32. PubMed ID: 25531244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of exciton fine structure and hole trapping on the hole state filling effect in the transient absorption spectra of CdSe quantum dots.
    He S; Li Q; Jin T; Lian T
    J Chem Phys; 2022 Feb; 156(5):054704. PubMed ID: 35135264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric Confinement and Exciton Fine Structure in Lead Halide Perovskite Nanoplatelets.
    Ghribi A; Ben Aich R; Boujdaria K; Barisien T; Legrand L; Chamarro M; Testelin C
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical anisotropy of CsPbBr
    Diroll BT; Banerjee P; Shevchenko EV
    Nano Converg; 2023 Apr; 10(1):18. PubMed ID: 37186268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sp-d Exchange Interactions in Wave Function Engineered Colloidal CdSe/Mn:CdS Hetero-Nanoplatelets.
    Muckel F; Delikanli S; Hernández-Martínez PL; Priesner T; Lorenz S; Ackermann J; Sharma M; Demir HV; Bacher G
    Nano Lett; 2018 Mar; 18(3):2047-2053. PubMed ID: 29464958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zero-Threshold Optical Gain in Electrochemically Doped Nanoplatelets and the Physics Behind It.
    Geuchies JJ; Dijkhuizen R; Koel M; Grimaldi G; du Fossé I; Evers WH; Hens Z; Houtepen AJ
    ACS Nano; 2022 Nov; 16(11):18777-18788. PubMed ID: 36256901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Exciton-Photon Coupling with Colloidal Nanoplatelets in an Open Microcavity.
    Flatten LC; Christodoulou S; Patel RK; Buccheri A; Coles DM; Reid BP; Taylor RA; Moreels I; Smith JM
    Nano Lett; 2016 Nov; 16(11):7137-7141. PubMed ID: 27737546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.
    Protasenko V; Bacinello D; Kuno M
    J Phys Chem B; 2006 Dec; 110(50):25322-31. PubMed ID: 17165978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast Charge Separation in Two-Dimensional CsPbBr
    Li Q; Lian T
    J Phys Chem Lett; 2019 Feb; 10(3):566-573. PubMed ID: 30642172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark and Bright Excitons in Halide Perovskite Nanoplatelets.
    Gramlich M; Swift MW; Lampe C; Lyons JL; Döblinger M; Efros AL; Sercel PC; Urban AS
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103013. PubMed ID: 34939751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitons in metal halide perovskite nanoplatelets: an effective mass description of polaronic, dielectric and quantum confinement effects.
    Movilla JL; Planelles J; Climente JI
    Nanoscale Adv; 2023 Nov; 5(22):6093-6101. PubMed ID: 37941960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.