These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32584026)

  • 21. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pressure-dependent optical behaviors of colloidal CdSe nanoplatelets.
    Zhou B; Xiao G; Yang X; Li Q; Wang K; Wang Y
    Nanoscale; 2015 May; 7(19):8835-42. PubMed ID: 25910180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large Band Edge Tunability in Colloidal Nanoplatelets.
    Zhou Q; Cho Y; Yang S; Weiss EA; Berkelbach TC; Darancet P
    Nano Lett; 2019 Oct; 19(10):7124-7129. PubMed ID: 31545615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biexcitons in CdSe nanoplatelets: geometry, binding energy and radiative rate.
    Macias-Pinilla DF; Planelles J; Climente JI
    Nanoscale; 2022 Jun; 14(23):8493-8500. PubMed ID: 35662303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems.
    Frederick MT; Amin VA; Weiss EA
    J Phys Chem Lett; 2013 Feb; 4(4):634-40. PubMed ID: 26281879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion.
    Khan AH; Bertrand GHV; Teitelboim A; Sekhar M C; Polovitsyn A; Brescia R; Planelles J; Climente JI; Oron D; Moreels I
    ACS Nano; 2020 Apr; 14(4):4206-4215. PubMed ID: 32275814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control.
    Akkerman QA; Motti SG; Srimath Kandada AR; Mosconi E; D'Innocenzo V; Bertoni G; Marras S; Kamino BA; Miranda L; De Angelis F; Petrozza A; Prato M; Manna L
    J Am Chem Soc; 2016 Jan; 138(3):1010-6. PubMed ID: 26726764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Lateral Size and Surface Passivation on the Near-Band-Edge Excitonic Emission from Quasi-Two-Dimensional CdSe Nanoplatelets.
    Yu J; Zhang C; Pang G; Sun XW; Chen R
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41821-41827. PubMed ID: 31613084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties.
    Ayari S; Quick MT; Owschimikow N; Christodoulou S; Bertrand GHV; Artemyev M; Moreels I; Woggon U; Jaziri S; Achtstein AW
    Nanoscale; 2020 Jul; 12(27):14448-14458. PubMed ID: 32618327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomistic Analysis of Room Temperature Quantum Coherence in Two-Dimensional CdSe Nanostructures.
    Pal S; Nijjar P; Frauenheim T; Prezhdo OV
    Nano Lett; 2017 Apr; 17(4):2389-2396. PubMed ID: 28234486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic and optical properties of tapered tetrahedral semiconductor nanocrystals.
    Na G; Li Y; Wang X; Fu Y; Zhang L
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33836511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron and Hole Spin Relaxation in CdSe Colloidal Nanoplatelets.
    Xiang D; Li Y; Wang L; Ding T; Wang J; Wu K
    J Phys Chem Lett; 2021 Jan; 12(1):86-93. PubMed ID: 33306386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of morphology on the blinking mechanisms and the excitonic fine structure of single colloidal nanoplatelets.
    Hu Z; Singh A; Goupalov SV; Hollingsworth JA; Htoon H
    Nanoscale; 2018 Dec; 10(48):22861-22870. PubMed ID: 30488930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of an excitonic ground state in InAs/InSb quantum dots.
    He L; Bester G; Zunger A
    Phys Rev Lett; 2005 Jan; 94(1):016801. PubMed ID: 15698111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration.
    Diroll BT; Guzelturk B; Po H; Dabard C; Fu N; Makke L; Lhuillier E; Ithurria S
    Chem Rev; 2023 Apr; 123(7):3543-3624. PubMed ID: 36724544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thickness-modulated optical nonlinearity of colloidal CdSe-CdS core-shell nanoplatelets: large two-photon absorption and self-focusing effects.
    Xiang W; Zhu B; Bai C; Gu B; Lv C; Zhang J
    Nanoscale; 2023 Nov; 15(44):17996-18003. PubMed ID: 37906472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exciton States and Optical Absorption in CdSe and PbS Nanoplatelets.
    Baghdasaryan DA; Harutyunyan VA; Hayrapetyan DB; Kazaryan EM; Baskoutas S; Sarkisyan HA
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroabsorption by 0D, 1D, and 2D nanocrystals: a comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets.
    Achtstein AW; Prudnikau AV; Ermolenko MV; Gurinovich LI; Gaponenko SV; Woggon U; Baranov AV; Leonov MY; Rukhlenko ID; Fedorov AV; Artemyev MV
    ACS Nano; 2014 Aug; 8(8):7678-86. PubMed ID: 25107475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dielectric function, critical points, and Rydberg exciton series of WSe
    Diware MS; Ganorkar SP; Park K; Chegal W; Cho HM; Cho YJ; Kim YD; Kim H
    J Phys Condens Matter; 2018 Jun; 30(23):235701. PubMed ID: 29714172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.