These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32584026)

  • 41. Valence-band mixing effects in the upper-excited-state magneto-optical responses of colloidal Mn2+-doped CdSe quantum dots.
    Fainblat R; Muckel F; Barrows CJ; Vlaskin VA; Gamelin DR; Bacher G
    ACS Nano; 2014 Dec; 8(12):12669-75. PubMed ID: 25438717
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How Exciton and Single Carriers Block the Excitonic Transition in Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; He S; Lian T
    Nano Lett; 2020 Aug; 20(8):6162-6169. PubMed ID: 32697589
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Doping and quantum confinement effects in single Si nanocrystals observed by scanning tunneling spectroscopy.
    Wolf O; Dasog M; Yang Z; Balberg I; Veinot JG; Millo O
    Nano Lett; 2013 Jun; 13(6):2516-21. PubMed ID: 23662693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dielectric Confinement Enables Molecular Coupling in Stacked Colloidal Nanoplatelets.
    Movilla JL; Planelles J; Climente JI
    J Phys Chem Lett; 2020 May; 11(9):3294-3300. PubMed ID: 32272016
    [TBL] [Abstract][Full Text] [Related]  

  • 45. One-Dimensional Carrier Confinement in "Giant" CdS/CdSe Excitonic Nanoshells.
    Razgoniaeva N; Moroz P; Yang M; Budkina DS; Eckard H; Augspurger M; Khon D; Tarnovsky AN; Zamkov M
    J Am Chem Soc; 2017 Jun; 139(23):7815-7822. PubMed ID: 28535356
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering of Exciton Spatial Distribution in CdS Nanoplatelets.
    Zhang Y; Zhang H; Chen D; Sun CJ; Ren Y; Jiang J; Wang L; Li Z; Peng X
    Nano Lett; 2021 Jun; 21(12):5201-5208. PubMed ID: 34114464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exciton Cooling in 2D Perovskite Nanoplatelets: Rationalized Carrier-Induced Stark and Phonon Bottleneck Effects.
    Villamil Franco C; Trippé-Allard G; Mahler B; Cornaggia C; Lauret JS; Gustavsson T; Cassette E
    J Phys Chem Lett; 2022 Jan; 13(1):393-399. PubMed ID: 34985898
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tuning optoelectronic response of lateral core-alloyed crown nanoplatelets: type-II CdSe-CdSe
    Ben Amara I; Boustanji H; Jaziri S
    J Phys Condens Matter; 2021 Sep; 33(46):. PubMed ID: 34412039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Size-controlled excitonic effects on electronic and optical properties of Sb
    Peng Y; Xia C; Tan Z; An J; Zhang Q
    Phys Chem Chem Phys; 2019 Dec; 21(48):26515-26524. PubMed ID: 31777912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exciton Binding Energy of Two-Dimensional Highly Luminescent Colloidal Nanostructures Determined from Combined Optical and Photoacoustic Spectroscopies.
    Zelewski SJ; Nawrot KC; Zak A; Gladysiewicz M; Nyk M; Kudrawiec R
    J Phys Chem Lett; 2019 Jun; 10(12):3459-3464. PubMed ID: 31180226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Shell Filling and Paramagnetism in Few-Electron Colloidal Nanoplatelets.
    Llusar J; Climente JI
    Phys Rev Lett; 2022 Aug; 129(6):066404. PubMed ID: 36018646
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS).
    Spittel D; Poppe J; Meerbach C; Ziegler C; Hickey SG; Eychmüller A
    ACS Nano; 2017 Dec; 11(12):12174-12184. PubMed ID: 29178801
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chloride-Induced Thickness Control in CdSe Nanoplatelets.
    Christodoulou S; Climente JI; Planelles J; Brescia R; Prato M; Martín-García B; Khan AH; Moreels I
    Nano Lett; 2018 Oct; 18(10):6248-6254. PubMed ID: 30178676
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power.
    Griffin GB; Ithurria S; Dolzhnikov DS; Linkin A; Talapin DV; Engel GS
    J Chem Phys; 2013 Jan; 138(1):014705. PubMed ID: 23298055
    [TBL] [Abstract][Full Text] [Related]  

  • 55. One-Dimensional Nature of InAs/InP Quantum Dashes Revealed by Scanning Tunneling Spectroscopy.
    Papatryfonos K; Rodary G; David C; Lelarge F; Ramdane A; Girard JC
    Nano Lett; 2015 Jul; 15(7):4488-97. PubMed ID: 26076402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pseudo-refractive index and excitonic features of single layer CdSe/CdS core-shell nanoplatelet films.
    Jakovljević MM; Aškrabić S; Isić G; Vasić B; Gajić R; Artemyev M
    Nanotechnology; 2020 Oct; 31(43):435708. PubMed ID: 32634786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scanning Tunneling Microscope-Induced Excitonic Luminescence of a Two-Dimensional Semiconductor.
    Pommier D; Bretel R; López LEP; Fabre F; Mayne A; Boer-Duchemin E; Dujardin G; Schull G; Berciaud S; Le Moal E
    Phys Rev Lett; 2019 Jul; 123(2):027402. PubMed ID: 31386496
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis, optical properties and growth process of In2S3 nanoparticles.
    Ning J; Men K; Xiao G; Zhao L; Wang L; Liu B; Zou B
    J Colloid Interface Sci; 2010 Jul; 347(2):172-6. PubMed ID: 20399446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals.
    Jasieniak J; Califano M; Watkins SE
    ACS Nano; 2011 Jul; 5(7):5888-902. PubMed ID: 21662980
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.
    Weidman MC; Seitz M; Stranks SD; Tisdale WA
    ACS Nano; 2016 Aug; 10(8):7830-9. PubMed ID: 27471862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.