BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32584535)

  • 1. Pyrrole-Containing Semiconducting Materials: Synthesis and Applications in Organic Photovoltaics and Organic Field-Effect Transistors.
    Bulumulla C; Gunawardhana R; Gamage PL; Miller JT; Kularatne RN; Biewer MC; Stefan MC
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32209-32232. PubMed ID: 32584535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BODIPY-Based Semiconducting Materials for Organic Bulk Heterojunction Photovoltaics and Thin-Film Transistors.
    Ho D; Ozdemir R; Kim H; Earmme T; Usta H; Kim C
    Chempluschem; 2019 Jan; 84(1):18-37. PubMed ID: 31950740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine Structural Tuning of Thieno[3,2- b] Pyrrole Donor for Designing Banana-Shaped Semiconductors Relevant to Organic Field Effect Transistors.
    Mohajeri A; Omidvar A; Setoodeh H
    J Chem Inf Model; 2019 May; 59(5):1930-1945. PubMed ID: 30575398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naphthodithiophenes: emerging building blocks for organic electronics.
    Takimiya K; Osaka I
    Chem Rec; 2015 Feb; 15(1):175-88. PubMed ID: 25346498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ladder-Type Heteroarene-Based Organic Semiconductors.
    Chen J; Yang K; Zhou X; Guo X
    Chem Asian J; 2018 Sep; 13(18):2587-2600. PubMed ID: 29911315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. π-Extended Pyrrole-Fused Heteropine: Synthesis, Properties, and Application in Organic Field-Effect Transistors.
    Wang W; Hanindita F; Tanaka Y; Ochiai K; Sato H; Li Y; Yasuda T; Ito S
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202218176. PubMed ID: 36575129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chalcogenopheno[3,2-
    Ma Z; Udamulle Gedara CM; Wang H; Biewer MC; Stefan MC
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46119-46129. PubMed ID: 37738113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bithiazole: An Intriguing Electron-Deficient Building for Plastic Electronic Applications.
    Su HL; Sredojevic DN; Bronstein H; Marks TJ; Schroeder BC; Al-Hashimi M
    Macromol Rapid Commun; 2017 May; 38(10):. PubMed ID: 28251727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiophene-Based Organic Semiconductors.
    Turkoglu G; Cinar ME; Ozturk T
    Top Curr Chem (Cham); 2017 Oct; 375(6):84. PubMed ID: 29063993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Isoindigo-Inspired Organic Semiconductors.
    Randell NM; Kelly TL
    Chem Rec; 2019 Jun; 19(6):973-988. PubMed ID: 30375156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors.
    Kergoat L; Piro B; Berggren M; Horowitz G; Pham MC
    Anal Bioanal Chem; 2012 Feb; 402(5):1813-26. PubMed ID: 21910013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics.
    Osaka I; Takimiya K
    Adv Mater; 2017 Jul; 29(25):. PubMed ID: 28240796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HOMO stabilisation in π-extended dibenzotetrathiafulvalene derivatives for their application in organic field-effect transistors.
    Geng Y; Pfattner R; Campos A; Wang W; Jeannin O; Hauser J; Puigdollers J; Bromley ST; Decurtins S; Veciana J; Rovira C; Mas-Torrent M; Liu SX
    Chemistry; 2014 Dec; 20(50):16672-9. PubMed ID: 25318677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors.
    Kim DH; Lee BL; Moon H; Kang HM; Jeong EJ; Park JI; Han KM; Lee S; Yoo BW; Koo BW; Kim JY; Lee WH; Cho K; Becerril HA; Bao Z
    J Am Chem Soc; 2009 May; 131(17):6124-32. PubMed ID: 19354240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of Thieno[3,2-
    Bulumulla C; Kularatne RN; Gunawardhana R; Nguyen HQ; McCandless GT; Biewer MC; Stefan MC
    ACS Macro Lett; 2018 Jun; 7(6):629-634. PubMed ID: 35632968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance five-ring-fused organic semiconductors for field-effect transistors.
    Jiang H; Zhu S; Cui Z; Li Z; Liang Y; Zhu J; Hu P; Zhang HL; Hu W
    Chem Soc Rev; 2022 Apr; 51(8):3071-3122. PubMed ID: 35319036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of siloxanes, silsesquioxanes, and silicones in organic semiconducting materials.
    Kamino BA; Bender TP
    Chem Soc Rev; 2013 Jun; 42(12):5119-30. PubMed ID: 23549525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.