These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32584615)

  • 1. Modeling percutaneous absorption for successful drug discovery and development.
    Cheruvu HS; Liu X; Grice JE; Roberts MS
    Expert Opin Drug Discov; 2020 Oct; 15(10):1181-1198. PubMed ID: 32584615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topical drug delivery: History, percutaneous absorption, and product development.
    Roberts MS; Cheruvu HS; Mangion SE; Alinaghi A; Benson HAE; Mohammed Y; Holmes A; van der Hoek J; Pastore M; Grice JE
    Adv Drug Deliv Rev; 2021 Oct; 177():113929. PubMed ID: 34403750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeation enhancers in transdermal drug delivery: benefits and limitations.
    Kováčik A; Kopečná M; Vávrová K
    Expert Opin Drug Deliv; 2020 Feb; 17(2):145-155. PubMed ID: 31910342
    [No Abstract]   [Full Text] [Related]  

  • 4. An updated database of human maximum skin fluxes and epidermal permeability coefficients for drugs, xenobiotics, and other solutes applied as aqueous solutions.
    Cheruvu HS; Liu X; Grice JE; Roberts MS
    Data Brief; 2022 Jun; 42():108242. PubMed ID: 35599823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling of human oral bioavailability: what will be next?
    Cabrera-Pérez MÁ; Pham-The H
    Expert Opin Drug Discov; 2018 Jun; 13(6):509-521. PubMed ID: 29663836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide Optimization at the Drug Discovery-Development Interface: Tailoring of Physicochemical Properties Toward Specific Formulation Requirements.
    Evers A; Pfeiffer-Marek S; Bossart M; Heubel C; Stock U; Tiwari G; Gebauer B; Elshorst B; Pfenninger A; Lukasczyk U; Hessler G; Kamm W; Wagner M
    J Pharm Sci; 2019 Apr; 108(4):1404-1414. PubMed ID: 30528197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used.
    Riviere JE; Brooks JD
    Toxicol Sci; 2011 Jan; 119(1):224-32. PubMed ID: 20947718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topical and transdermal delivery of caffeine.
    Luo L; Lane ME
    Int J Pharm; 2015 Jul; 490(1-2):155-64. PubMed ID: 26004004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Percutaneous penetration paradigms: the contribution of Jonathan Hadgraft.
    Lane ME
    Skin Pharmacol Physiol; 2013; 26(4-6):277-85. PubMed ID: 23921114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in predicting skin permeability of hydrophilic solutes.
    Chen L; Han L; Lian G
    Adv Drug Deliv Rev; 2013 Feb; 65(2):295-305. PubMed ID: 22580335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of the in vitro permeation of ibuprofen in mammalian skin, the PAMPA model and silicone membrane.
    Luo L; Patel A; Sinko B; Bell M; Wibawa J; Hadgraft J; Lane ME
    Int J Pharm; 2016 May; 505(1-2):14-9. PubMed ID: 27025294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat effects on drug delivery across human skin.
    Hao J; Ghosh P; Li SK; Newman B; Kasting GB; Raney SG
    Expert Opin Drug Deliv; 2016; 13(5):755-68. PubMed ID: 26808472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute-vehicle-skin interactions in percutaneous absorption: the principles and the people.
    Roberts MS
    Skin Pharmacol Physiol; 2013; 26(4-6):356-70. PubMed ID: 23921122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies.
    Benson HAE; Grice JE; Mohammed Y; Namjoshi S; Roberts MS
    Curr Drug Deliv; 2019; 16(5):444-460. PubMed ID: 30714524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transdermal drug delivery systems: skin perturbation devices.
    Brown MB; Traynor MJ; Martin GP; Akomeah FK
    Methods Mol Biol; 2008; 437():119-39. PubMed ID: 18369965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Skin Permeability by Means of Computational Approaches: Reliability and Caveats in Pharmaceutical Studies.
    Pecoraro B; Tutone M; Hoffman E; Hutter V; Almerico AM; Traynor M
    J Chem Inf Model; 2019 May; 59(5):1759-1771. PubMed ID: 30658035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of solvents on skin absorption of nonvolatile lipophilic and polar solutes under finite dose conditions.
    Intarakumhaeng R; Wanasathop A; Li SK
    Int J Pharm; 2018 Jan; 536(1):405-413. PubMed ID: 29180256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biophysically based dermatopharmacokinetic compartment model for quantifying percutaneous penetration and absorption of topically applied agents. I. Theory.
    Williams PL; Riviere JE
    J Pharm Sci; 1995 May; 84(5):599-608. PubMed ID: 7658351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR studies in the discovery of novel type-II diabetic therapies.
    Abuhammad A; Taha MO
    Expert Opin Drug Discov; 2016; 11(2):197-214. PubMed ID: 26558613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.