BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32584666)

  • 21. Vasodilator tone in the llama fetus: the role of nitric oxide during normoxemia and hypoxemia.
    Sanhueza EM; Riquelme RA; Herrera EA; Giussani DA; Blanco CE; Hanson MA; Llanos AJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R776-83. PubMed ID: 15905225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulmonary circulation of the llama at high and low altitudes.
    Harris P; Heath D; Smith P; Williams DR; Ramirez A; Krüger H; Jones DM
    Thorax; 1982 Jan; 37(1):38-45. PubMed ID: 7071792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiorespiratory functions in the fetal llama.
    Benavides CE; Pérez R; Espinoza M; Cabello G; Riquelme R; Parer JT; Llanos AJ
    Respir Physiol; 1989 Mar; 75(3):327-34. PubMed ID: 2717820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiovascular responses to arginine vasopressin blockade during acute hypoxemia in the llama fetus.
    Herrera EA; Riquelme RA; Sanhueza EM; Gajardo C; Parer JT; Llanos AJ
    High Alt Med Biol; 2000; 1(3):175-84. PubMed ID: 11254227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitric oxide synthase activity in brain tissues from llama fetuses submitted to hypoxemia.
    Galleguillos M; Valenzuela MA; Riquelme R; Sanhueza E; Sánchez G; Figueroa JP; Llanos AJ
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Jun; 129(2-3):605-14. PubMed ID: 11423330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiovascular responses to graded degrees of hypoxaemia in the llama fetus.
    Llanos AJ; Riquelme RA; Moraga FA; Cabello G; Parer JT
    Reprod Fertil Dev; 1995; 7(3):549-52. PubMed ID: 8606967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes.
    Ivy CM; Scott GR
    Acta Physiol (Oxf); 2017 Dec; 221(4):266-282. PubMed ID: 28640969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is the rapid and intense peripheral vasoconstriction occurring during acute hypoxaemia in the llama fetus an arterial chemoreflex?
    Giussani DA; Riquelme RA; Hanson MA; Llanos AJ
    Adv Exp Med Biol; 1994; 360():341-4. PubMed ID: 7872115
    [No Abstract]   [Full Text] [Related]  

  • 29. Neonatal tolerance to hypoxia: a comparative-physiological approach.
    Singer D
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Jul; 123(3):221-34. PubMed ID: 10501017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiopulmonary transition in the high altitude infant.
    Niermeyer S
    High Alt Med Biol; 2003; 4(2):225-39. PubMed ID: 12855054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The interaction between phosphate and protein, and the respiration of the llama, the human fetus and the horse (author's transl)].
    Braunitzer G; Schrank B; Stangl A; Bauer C
    Hoppe Seylers Z Physiol Chem; 1978 May; 359(5):547-58. PubMed ID: 669574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates.
    Storz JF; Scott GR
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Mar; 253():110865. PubMed ID: 33301891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High altitude-induced pulmonary arterial hypertension in the llama (Lama glama).
    Banchero N; Grover RF; Will JA
    Am J Physiol; 1971 Feb; 220(2):422-7. PubMed ID: 5540891
    [No Abstract]   [Full Text] [Related]  

  • 34. Baroreflex control of sympathetic vasomotor activity and resting arterial pressure at high altitude: insight from Lowlanders and Sherpa.
    Simpson LL; Busch SA; Oliver SJ; Ainslie PN; Stembridge M; Steinback CD; Moore JP
    J Physiol; 2019 May; 597(9):2379-2390. PubMed ID: 30893472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. O2 transport in the alpaca (Lama pacos) at sea level and at 3,300 m.
    Sillau AH; Cueva S; Valenzuela A; Candela E
    Respir Physiol; 1976 Aug; 27(2):147-55. PubMed ID: 785566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological adaptation of the cardiovascular system to high altitude.
    Naeije R
    Prog Cardiovasc Dis; 2010; 52(6):456-66. PubMed ID: 20417339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Action of 2-Aminoethyldiphenyl Borinate on the Pulmonary Arterial Hypertension and Remodeling of High-Altitude Hypoxemic Lambs.
    Castillo-Galán S; Parrau D; Hernández I; Quezada S; Díaz M; Ebensperger G; Herrera EA; Moraga FA; Iturriaga R; Llanos AJ; Reyes RV
    Front Physiol; 2021; 12():765281. PubMed ID: 35082688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lungs at high-altitude: genomic insights into hypoxic responses.
    Mishra A; Mohammad G; Norboo T; Newman JH; Pasha MA
    J Appl Physiol (1985); 2015 Jul; 119(1):1-15. PubMed ID: 25911686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Lung problems in acute to subacute exposure to medium altitudes].
    Marugg D
    Praxis (Bern 1994); 1995 Oct; 84(40):1101-7. PubMed ID: 7481316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Store-operated channels in the pulmonary circulation of high- and low-altitude neonatal lambs.
    Parrau D; Ebensperger G; Herrera EA; Moraga F; Riquelme RA; Ulloa CE; Rojas RT; Silva P; Hernandez I; Ferrada J; Diaz M; Parer JT; Cabello G; Llanos AJ; Reyes RV
    Am J Physiol Lung Cell Mol Physiol; 2013 Apr; 304(8):L540-8. PubMed ID: 23418093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.