These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 3258476)

  • 21. Ion transport by rabbit descending colon: mechanisms of transepithelial potassium transport.
    McCabe RD; Smith PL; Sullivan LP
    Am J Physiol; 1984 May; 246(5 Pt 1):G594-602. PubMed ID: 6720955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potassium and sodium transport across single distal tubules of Amphiuma.
    Wiederholt M; Sullivan WJ; Giebisch G
    J Gen Physiol; 1971 May; 57(5):495-525. PubMed ID: 5553099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uptake of potassium by nonmyelinating Schwann cells induced by axonal activity.
    Robert A; Jirounek P
    J Neurophysiol; 1994 Dec; 72(6):2570-9. PubMed ID: 7897474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dependency of renal potassium excretion on Na,K-ATPase transport rate.
    Sejersted OM; Monclair T; Mathisen O; Hartmann A; Kiil F
    Acta Physiol Scand; 1985 Jan; 123(1):9-19. PubMed ID: 2982247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Barium-induced inhibition of K+ transport mechanisms in cortical astrocytes--its possible contribution to the large Ba2+-evoked extracellular K+ signal in brain.
    Walz W; Shargool M; Hertz L
    Neuroscience; 1984 Nov; 13(3):945-9. PubMed ID: 6098861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolated perfused amphibian renal tubules: the diluting segment.
    Stoner LC
    Am J Physiol; 1977 Nov; 233(5):F438-44. PubMed ID: 411379
    [No Abstract]   [Full Text] [Related]  

  • 27. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of hypertonic stress on liver cell volume, bile flow, and volume-regulatory K+ fluxes.
    Haddad P; Thalhammer T; Graf J
    Am J Physiol; 1989 Mar; 256(3 Pt 1):G563-9. PubMed ID: 2493745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular K+ permeation across the cortical collecting tubule: effects of Na+-K+ pump inhibition and membrane depolarization.
    Stokes JB
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F467-75. PubMed ID: 6326592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Ba2+ on secretory K+ movement and electrical properties of the early distal tubule of Triturus kidney.
    Sakamoto H; Hoshi T
    Jpn J Physiol; 1985; 35(6):1033-49. PubMed ID: 3834214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ouabain stimulates unidirectional and net potassium efflux in resting mammalian skeletal muscle.
    Hawke TJ; Lessard S; Vickery L; Lipskie SL; Lindinger MI
    Can J Physiol Pharmacol; 2001 Nov; 79(11):932-41. PubMed ID: 11760095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Ba2+ and furosemide on K+ and Rb+ secretion and absorption in isolated frog skin.
    Nielsen R
    Acta Physiol Scand; 1987 Oct; 131(2):221-9. PubMed ID: 3499754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell cycle dependent changes in potassium transport.
    Mills B; Tupper JT
    J Cell Physiol; 1976 Sep; 89(1):123-32. PubMed ID: 956277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A model of potassium ion efflux during exercise of skeletal muscle.
    Hazeyama Y; Sparks HV
    Am J Physiol; 1979 Jan; 236(1):R83-90. PubMed ID: 434191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of sodium for sodium exchange by phlorizin in frog sartorius muscle.
    Cseri J; Kovács T; Molnár G; Varga E
    Acta Physiol Hung; 1986; 67(3):307-16. PubMed ID: 2428205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of ouabain on potassium transport in the perfused bullfrog kidney.
    Wilkinson HL; Deeds DG; Sullivan LP; Welling DJ
    Am J Physiol; 1979 Feb; 236(2):F175-83. PubMed ID: 311159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Erythrocyte cationic transport systems in normal male and female volunteers.
    Lijnen P; M'Buyamba-Kabangu JR; Lissens W; Amery A
    Methods Find Exp Clin Pharmacol; 1985 Jan; 7(1):35-40. PubMed ID: 2985891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. K+ and Rb+ transport by the rabbit CCD: Rb+ reduces K+ conductance and Na+ transport.
    Warden DH; Hayashi M; Schuster VL; Stokes JB
    Am J Physiol; 1989 Jul; 257(1 Pt 2):F43-52. PubMed ID: 2546444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI; Lapin AV; Gusev GP
    Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trans- and paracellular K+ transport in diluting segment of frog kidney.
    Schwab A; Oberleithner H
    Pflugers Arch; 1988 Mar; 411(3):268-72. PubMed ID: 3260026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.