These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32584832)

  • 1. Optimal-robust selection of a fuel surrogate for homogeneous charge compression ignition modeling.
    García-Camacha Gutiérrez I; Martín Martín R; Sanz Argent J
    PLoS One; 2020; 15(6):e0234963. PubMed ID: 32584832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.
    Ganesh D; Nagarajan G; Ganesan S
    Environ Sci Technol; 2014; 48(5):3039-46. PubMed ID: 24383396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the dynamic operating envelope of HCCI engines using class imbalance learning.
    Janakiraman VM; Nguyen X; Sterniak J; Assanis D
    IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):98-112. PubMed ID: 25532159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Kinetic Model of Multicomponent Gasoline Surrogate Fuel with Nitric Oxide in HCCI Combustion.
    Yang C; Zheng Z
    Molecules; 2020 May; 25(10):. PubMed ID: 32408581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Support vector machine based emissions modeling using particle swarm optimization for homogeneous charge compression ignition engine.
    Gordon D; Norouzi A; Blomeyer G; Bedei J; Aliramezani M; Andert J; Koch CR
    Int J Engine Res; 2023 Feb; 24(2):536-551. PubMed ID: 36776419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation and exergy analysis on homogeneous charge compression ignition engine fueled with natural gas and diethyl ether.
    Natesan V; Periyasamy S; Muniappan K; Rajamohan S
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6677-6695. PubMed ID: 30632044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.
    Vaughan A; Bohac SV
    Neural Netw; 2015 Oct; 70():18-26. PubMed ID: 26164437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine.
    Yan ZD; Zhou CG; Su SC; Liu ZT; Wang XZ
    J Zhejiang Univ Sci; 2003; 4(2):170-4. PubMed ID: 12659230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. System based on thermal control of the HCCI technology developed for reduction of the vehicle NO
    Puškár M; Kopas M
    Sci Total Environ; 2018 Dec; 643():674-680. PubMed ID: 29957432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural control of fast nonlinear systems--application to a turbocharged SI engine with VCT.
    Colin G; Chamaillard Y; Bloch G; Corde G
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1101-14. PubMed ID: 17668664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.
    Leone TG; Anderson JE; Davis RS; Iqbal A; Reese RA; Shelby MH; Studzinski WM
    Environ Sci Technol; 2015 Sep; 49(18):10778-89. PubMed ID: 26237538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network controller development and implementation for spark ignition engines with high EGR levels.
    Vance JB; Singh A; Kaul BC; Jagannathan S; Drallmeier JA
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1083-100. PubMed ID: 17668663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine.
    Thangaraj S; Govindan N
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):422-435. PubMed ID: 29043587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting heavy-duty diesel vehicle emissions.
    Clark NN; Kern JM; Atkinson CM; Nine RD
    J Air Waste Manag Assoc; 2002 Jan; 52(1):84-94. PubMed ID: 15152668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a Chemical Kinetic Model of Five-Component Gasoline Surrogates under Lean Conditions.
    Yang C; Zheng Z
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the possibility of non-invasive multilayer temperature estimation using soft-computing methods.
    Teixeira CA; Pereira WC; Ruano AE; Ruano MG
    Ultrasonics; 2010 Jan; 50(1):32-43. PubMed ID: 19695653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of environmentally friendly fuel emissions from in-use vehicle exhaust: low-blend iso-stoichiometric GEM mixture as example.
    Schifter I; Díaz-Gutiérrez L; Rodríguez-Lara R; González-Macías C; González-Macías U
    Environ Monit Assess; 2017 May; 189(5):243. PubMed ID: 28456921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment.
    Kilian R; Matschinger H; Löeffler W; Roick C; Angermeyer MC
    J Ment Health Policy Econ; 2002 Mar; 5(1):21-31. PubMed ID: 12529567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on biogas-fuelled compression ignition engine under dual fuel mode.
    Mahla SK; Singla V; Sandhu SS; Dhir A
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9722-9729. PubMed ID: 29368199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.