BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32585150)

  • 1. Solid lipid nanoparticles as a novel formulation approach for tanespimycin (17-AAG) against leishmania infections: Preparation, characterization and macrophage uptake.
    Pires VC; Magalhães CP; Ferrante M; Rebouças JS; Nguewa P; Severino P; Barral A; Veras PST; Formiga FR
    Acta Trop; 2020 Nov; 211():105595. PubMed ID: 32585150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation of the HSP-90 Chaperone Inhibitor 17-AAG in Stable Liposome Allow Increasing the Therapeutic Index as Assessed,
    Petersen ALOA; Campos TA; Dantas DADS; Rebouças JS; da Silva JC; de Menezes JPB; Formiga FR; de Melo JV; Machado G; Veras PST
    Front Cell Infect Microbiol; 2018; 8():303. PubMed ID: 30214897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-delivery of paclitaxel and tanespimycin in lipid nanoparticles enhanced anti-gastric-tumor effect in vitro and in vivo.
    Ma L; Yang D; Li Z; Zhang X; Pu L
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):904-911. PubMed ID: 29757014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cremophor-free formulation for tanespimycin (17-AAG) using PEO-b-PDLLA micelles: characterization and pharmacokinetics in rats.
    Xiong MP; Yáñez JA; Kwon GS; Davies NM; Forrest ML
    J Pharm Sci; 2009 Apr; 98(4):1577-86. PubMed ID: 18752263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folate receptor targeted 17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer.
    Saxena V; Naguib Y; Hussain MD
    Colloids Surf B Biointerfaces; 2012 Jun; 94():274-80. PubMed ID: 22377218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 17-AAG kills intracellular Leishmania amazonensis while reducing inflammatory responses in infected macrophages.
    Petersen AL; Guedes CE; Versoza CL; Lima JG; de Freitas LA; Borges VM; Veras PS
    PLoS One; 2012; 7(11):e49496. PubMed ID: 23152914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment.
    Talaei S; Mellatyar H; Asadi A; Akbarzadeh A; Sheervalilou R; Zarghami N
    Chem Biol Drug Des; 2019 May; 93(5):760-786. PubMed ID: 30697932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation and in vitro evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric mixed micelles for glioblastoma multiforme.
    Saxena V; Hussain MD
    Colloids Surf B Biointerfaces; 2013 Dec; 112():350-5. PubMed ID: 24012704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotherapeutic potential of 17-AAG against cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis.
    Santos DM; Petersen AL; Celes FS; Borges VM; Veras PS; de Oliveira CI
    PLoS Negl Trop Dis; 2014 Oct; 8(10):e3275. PubMed ID: 25340794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG).
    Chandran T; Katragadda U; Teng Q; Tan C
    Int J Pharm; 2010 Jun; 392(1-2):170-7. PubMed ID: 20363305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin.
    Pradhan R; Ramasamy T; Choi JY; Kim JH; Poudel BK; Tak JW; Nukolova N; Choi HG; Yong CS; Kim JO
    Carbohydr Polym; 2015 Jun; 123():313-23. PubMed ID: 25843864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin.
    Larson N; Greish K; Bauer H; Maeda H; Ghandehari H
    Int J Pharm; 2011 Nov; 420(1):111-7. PubMed ID: 21856392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The HSP90 inhibitor 17-AAG potentiates the antileishmanial activity of the ether lipid edelfosine.
    Varela-M RE; Mollinedo-Gajate C; Muro A; Mollinedo F
    Acta Trop; 2014 Mar; 131():32-6. PubMed ID: 24299925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of intravenously administered CNF1010 (17-(allylamino)-17-demethoxygeldanamycin [17-AAG]) in patients with solid tumors.
    Saif MW; Erlichman C; Dragovich T; Mendelson D; Toft D; Burrows F; Storgard C; Von Hoff D
    Cancer Chemother Pharmacol; 2013 May; 71(5):1345-55. PubMed ID: 23564374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90.
    Sydor JR; Normant E; Pien CS; Porter JR; Ge J; Grenier L; Pak RH; Ali JA; Dembski MS; Hudak J; Patterson J; Penders C; Pink M; Read MA; Sang J; Woodward C; Zhang Y; Grayzel DS; Wright J; Barrett JA; Palombella VJ; Adams J; Tong JK
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17408-13. PubMed ID: 17090671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic biosynthesis and biological evaluation of novel 17-AAG glucoside as potential anti-cancer agents.
    Li HM; Li B; Sun X; Ma H; Zhu M; Dai Y; Ma T; Li Y; Hong YS; Wu CZ
    Bioorg Med Chem Lett; 2020 Aug; 30(15):127282. PubMed ID: 32527461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VIP-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: a novel targeted nanomedicine for breast cancer.
    Onyüksel H; Mohanty PS; Rubinstein I
    Int J Pharm; 2009 Jan; 365(1-2):157-61. PubMed ID: 18793708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of inhibitory effects of 17-AAG nanoparticles and free 17-AAG on HSP90 gene expression in breast cancer.
    Ghalhar MG; Akbarzadeh A; Rahmati M; Mellatyar H; Dariushnejad H; Zarghami N; Barkhordari A
    Asian Pac J Cancer Prev; 2014; 15(17):7113-8. PubMed ID: 25227799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90.
    Palma LC; Ferreira LFGR; Petersen ALOA; Dias BRS; Menezes JPB; Moreira DRM; Hernandes MZ; Veras PST
    Sci Rep; 2019 Oct; 9(1):14756. PubMed ID: 31611575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical characterization by AFM, FT-IR and DSC and biological assays of a promising antileishmania delivery system loaded with a natural Brazilian product.
    Marquele-Oliveira F; Torres EC; Barud Hda S; Zoccal KF; Faccioli LH; Hori JI; Berretta AA
    J Pharm Biomed Anal; 2016 May; 123():195-204. PubMed ID: 26897464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.