BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32585495)

  • 21. Enamel staining with e-cigarettes, tobacco heating products and modern oral nicotine products compared with cigarettes and snus: An in vitro study.
    Dalrymple A; Bean EJ; Badrock TC; Weidman RA; Thissen J; Coburn S; Murphy J
    Am J Dent; 2021 Feb; 34(1):3-9. PubMed ID: 33544982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of nicotine, tar, volatile organic compounds and carbonyls in mainstream cigarette smoke using a glass filter and a sorbent cartridge followed by the two-phase/one-pot elution method with carbon disulfide and methanol.
    Uchiyama S; Hayashida H; Izu R; Inaba Y; Nakagome H; Kunugita N
    J Chromatogr A; 2015 Dec; 1426():48-55. PubMed ID: 26653840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive comparative compositional study of the vapour phase of cigarette mainstream tobacco smoke and tobacco heating product aerosol.
    Savareear B; Escobar-Arnanz J; Brokl M; Saxton MJ; Wright C; Liu C; Focant JF
    J Chromatogr A; 2018 Dec; 1581-1582():105-115. PubMed ID: 30455053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of nicotine content in teeth submitted to prophylaxis and in-office bleaching by gas chromatography-mass spectrometry (GC-MS).
    de Geus JL; Beltrame FL; Wang M; Avula B; Khan IA; Loguercio AD; Kossatz S; Reis A
    Clin Oral Investig; 2018 Dec; 22(9):3043-3051. PubMed ID: 29468599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of conventional and heated tobacco product smoking on discoloration of artificial denture teeth.
    Wang Y; Ryu R; Seo JM; Lee JJ
    J Prosthet Dent; 2022 Aug; 128(2):206-210. PubMed ID: 33608106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of solid particles in the mainstream aerosol of the Tobacco Heating System THS2.2 and mainstream smoke of a 3R4F reference cigarette.
    Pratte P; Cosandey S; Goujon Ginglinger C
    Hum Exp Toxicol; 2017 Nov; 36(11):1115-1120. PubMed ID: 27932538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of mainstream tobacco smoke particulate phase using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.
    Brokl M; Bishop L; Wright CG; Liu C; McAdam K; Focant JF
    J Sep Sci; 2013 Mar; 36(6):1037-44. PubMed ID: 23427113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LC/MS analysis of three-dimensional model cells exposed to cigarette smoke or aerosol from a novel tobacco vapor product.
    Takanami Y; Kitamura N; Ito S
    J Toxicol Sci; 2020; 45(12):769-782. PubMed ID: 33268677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical analysis of cigarette smoke particulate generated in the MSB-01 in vitro whole smoke exposure system.
    Scian MJ; Oldham MJ; Miller JH; Kane DB; Edmiston JS; McKinney WJ
    Inhal Toxicol; 2009 Oct; 21(12):1040-52. PubMed ID: 19772483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the impact of aerosol from a potential modified risk tobacco product compared with cigarette smoke on human organotypic oral epithelial cultures under different exposure regimens.
    Zanetti F; Sewer A; Scotti E; Titz B; Schlage WK; Leroy P; Kondylis A; Vuillaume G; Iskandar AR; Guedj E; Trivedi K; Schneider T; Elamin A; Martin F; Frentzel S; Ivanov NV; Peitsch MC; Hoeng J
    Food Chem Toxicol; 2018 May; 115():148-169. PubMed ID: 29505817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multivariate analysis of mainstream tobacco smoke particulate phase by headspace solid-phase micro extraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.
    Brokl M; Bishop L; Wright CG; Liu C; McAdam K; Focant JF
    J Chromatogr A; 2014 Nov; 1370():216-29. PubMed ID: 25454146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes.
    Malinska D; Szymański J; Patalas-Krawczyk P; Michalska B; Wojtala A; Prill M; Partyka M; Drabik K; Walczak J; Sewer A; Johne S; Luettich K; Peitsch MC; Hoeng J; Duszyński J; Szczepanowska J; van der Toorn M; Wieckowski MR
    Food Chem Toxicol; 2018 May; 115():1-12. PubMed ID: 29448087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study of comprehensive gas chromatography-nitrogen chemiluminescence detection and gas chromatography-ion trap-tandem mass spectrometry for determining nicotine and carcinogen organic nitrogen compounds in thirdhand tobacco smoke.
    Ramírez N; Vallecillos L; Lewis AC; Borrull F; Marcé RM; Hamilton JF
    J Chromatogr A; 2015 Dec; 1426():191-200. PubMed ID: 26684592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation and comparison of the transfer of TSNA from tobacco to cigarette mainstream smoke and to the aerosol of a heated tobacco product, THS2.2.
    Jaccard G; Kondylis A; Gunduz I; Pijnenburg J; Belushkin M
    Regul Toxicol Pharmacol; 2018 Aug; 97():103-109. PubMed ID: 29928933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tobacco heating system has less impact on bone metabolism than cigarette smoke.
    Weng W; Bovard D; Zanetti F; Ehnert S; Braun B; Uynuk-Ool T; Histing T; Hoeng J; Nussler AK; Aspera-Werz RH
    Food Chem Toxicol; 2023 Mar; 173():113637. PubMed ID: 36708864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multidimensional gas chromatography in combination with accurate mass, tandem mass spectrometry, and element-specific detection for identification of sulfur compounds in tobacco smoke.
    Ochiai N; Mitsui K; Sasamoto K; Yoshimura Y; David F; Sandra P
    J Chromatogr A; 2014 Sep; 1358():240-51. PubMed ID: 25087743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systems toxicology study reveals reduced impact of heated tobacco product aerosol extract relative to cigarette smoke on premature aging and exacerbation effects in aged aortic cells in vitro.
    Poussin C; van der Toorn M; Scheuner S; Piault R; Kondylis A; Savioz R; Dulize R; Peric D; Guedj E; Maranzano F; Merg C; Morelli M; Egesipe AL; Johne S; Majeed S; Pak C; Schneider T; Schlage WK; Ivanov NV; Peitsch MC; Hoeng J
    Arch Toxicol; 2021 Oct; 95(10):3341-3359. PubMed ID: 34313809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of eight carbonyl compounds in aerosols trapped in phosphate buffer saline solutions to support in vitro assessment studies.
    Buratto R; Correia D; Parel M; Crenna M; Bilger M; Debrick A
    Talanta; 2018 Jul; 184():42-49. PubMed ID: 29674064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectrofluorometric method for measuring tobacco smoke particulate matter on cigarette filters and Cambridge pads.
    Paszkiewicz GM; Pauly JL
    Tob Control; 2008 Sep; 17 Suppl 1():i53-8. PubMed ID: 18768460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of monoamine oxidase inhibition by cigarettes and modified risk tobacco products.
    van der Toorn M; Koshibu K; Schlage WK; Majeed S; Pospisil P; Hoeng J; Peitsch MC
    Toxicol Rep; 2019; 6():1206-1215. PubMed ID: 31768332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.