BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32585514)

  • 1. Predicting copper toxicity in zebrafish larvae under complex water chemistry conditions by using a toxicokinetic-toxicodynamic model.
    Gao Y; Feng J; Zhu J; Zhu L
    J Hazard Mater; 2020 Dec; 400():123205. PubMed ID: 32585514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae.
    Gao Y; Feng J; Han F; Zhu L
    Environ Pollut; 2016 Jun; 213():16-29. PubMed ID: 26874871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting cadmium and lead toxicities in zebrafish (Danio rerio) larvae by using a toxicokinetic-toxicodynamic model that considers the effects of cations.
    Feng J; Gao Y; Chen M; Xu X; Huang M; Yang T; Chen N; Zhu L
    Sci Total Environ; 2018 Jun; 625():1584-1595. PubMed ID: 29996455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of acute toxicity of cadmium and lead to zebrafish larvae by using a refined toxicokinetic-toxicodynamic model.
    Gao Y; Feng J; Zhu L
    Aquat Toxicol; 2015 Dec; 169():37-45. PubMed ID: 26513221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicokinetic-toxicodynamic modeling of cadmium and lead toxicity to larvae and adult zebrafish.
    Gao Y; Zhang Y; Feng J; Zhu L
    Environ Pollut; 2019 Aug; 251():221-229. PubMed ID: 31082606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae.
    Gao Y; Feng J; Wang C; Zhu L
    Ecotoxicol Environ Saf; 2017 Apr; 138():146-153. PubMed ID: 28043033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biological characteristic extrapolation of compound toxicity for different developmental stage species with toxicokinetic-toxicodynamic model.
    Gao Y; Xie Z; Feng M; Feng J; Zhu L
    Ecotoxicol Environ Saf; 2020 Oct; 203():111043. PubMed ID: 32888597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Toxicokinetic and Toxicodynamic Parameters in Explaining the Sensitivity of Zebrafish Larvae to Four Metals.
    Yang L; Feng J; Gao Y; Zhu L
    Environ Sci Technol; 2021 Jul; 55(13):8965-8976. PubMed ID: 34129327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Multiple Linear Regression Models for Setting Water Quality Criteria for Copper: A Complementary Approach to the Biotic Ligand Model.
    Brix KV; DeForest DK; Tear L; Grosell M; Adams WJ
    Environ Sci Technol; 2017 May; 51(9):5182-5192. PubMed ID: 28409924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dissolved organic matter on the bioavailability and toxicity of cadmium in zebrafish larvae: Determination based on toxicokinetic-toxicodynamic processes.
    Gao Y; Zhu J; He A
    Water Res; 2022 Nov; 226():119272. PubMed ID: 36283231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the effects of metal pre-exposure on the sensitivity of zebrafish larvae to metal toxicity: A toxicokinetics-toxicodynamics approach.
    Gao Y; Xie Z; Zhu J; Cao H; Tan J; Feng J; Zhu L
    Ecotoxicol Environ Saf; 2021 Feb; 209():111788. PubMed ID: 33321419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper toxicity and the influence of water quality of Dongnai River and Mekong River waters on copper bioavailability and toxicity to three tropical species.
    Bui TK; Do-Hong LC; Dao TS; Hoang TC
    Chemosphere; 2016 Feb; 144():872-8. PubMed ID: 26421627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Risks of Cadmium Toxicity in Salinity-Fluctuating Estuarine Waters Using the Toxicokinetic-Toxicodynamic Model.
    Zhong G; Lu S; Chen R; Chen N; Tan QG
    Environ Sci Technol; 2020 Nov; 54(21):13899-13907. PubMed ID: 33059443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the interactions among metal mixtures in toxicodynamic process with generalized linear model.
    Feng J; Gao Y; Ji Y; Zhu L
    J Hazard Mater; 2018 Mar; 345():97-106. PubMed ID: 29131987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making the Biotic Ligand Model kinetic, easier to develop, and more flexible for deriving water quality criteria.
    Liang WQ; Xie M; Tan QG
    Water Res; 2021 Jan; 188():116548. PubMed ID: 33125989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Hardness and Dissolved Organic Carbon on the Acute Toxicity of Copper to Zebrafish (Danio rerio) at Different Life Stages.
    Liao W; Feng C; Liu N; Liu D; Yan Z; Bai Y; Xie H; Shi H; Wu D
    Bull Environ Contam Toxicol; 2019 Dec; 103(6):789-795. PubMed ID: 31605158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of the Biotic Ligand Model (BLM) to Predict Copper Toxicity in the White-Water of the Solimões-Amazon River.
    Pont GD; Domingos FX; Fernandes-de-Castilho M; Val AL
    Bull Environ Contam Toxicol; 2017 Jan; 98(1):27-32. PubMed ID: 27888328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimentally derived acute and chronic copper Biotic Ligand Models for rainbow trout.
    Crémazy A; Wood CM; Ng TY; Smith DS; Chowdhury MJ
    Aquat Toxicol; 2017 Nov; 192():224-240. PubMed ID: 28987990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model.
    Chen WQ; Wang WX; Tan QG
    Environ Pollut; 2017 Mar; 222():323-330. PubMed ID: 28024811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.