These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32585522)

  • 1. A new method of recycling gallium from yellow phosphorus flue dust by vacuum thermal reduction process.
    Ji W; Xie K; Yan S; Huang H; Chen H
    J Hazard Mater; 2020 Dec; 400():123234. PubMed ID: 32585522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and recovery of heavy metals zinc and lead from phosphorus flue dust by vacuum metallurgy.
    Ji W; Xie K; Yan S
    J Environ Manage; 2021 Sep; 294():113001. PubMed ID: 34111595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A clean process for phosphorus recovery and gallium enrichment from phosphorus flue dust by sodium carbonate roasting.
    Ji W; Yan S; Xie K; Yuan X; Wang Z; Li Y
    J Hazard Mater; 2022 Feb; 424(Pt C):127580. PubMed ID: 34736211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes.
    Zhan L; Xia F; Ye Q; Xiang X; Xie B
    J Hazard Mater; 2015 Dec; 299():388-94. PubMed ID: 26150281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable safe and environmentally friendly process to recovery valuable materials from hazardous waste InP.
    Zhang J; Li T; Pang J; Kong L; Yang Z; Chen L; Xu B; Yang B
    Waste Manag; 2023 Jan; 155():153-161. PubMed ID: 36379165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive characterization on Ga (In)-bearing dust generated from semiconductor industry for effective recovery of critical metals.
    Fang S; Tao T; Cao H; He M; Zeng X; Ning P; Zhao H; Wu M; Zhang Y; Sun Z
    Waste Manag; 2019 Apr; 89():212-223. PubMed ID: 31079734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition.
    Zhang L; Xu Z
    Environ Sci Technol; 2016 Sep; 50(17):9242-50. PubMed ID: 27501125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel method for recovering valuable metals from Sn ash: Vacuum carbothermal reduction-directional condensation.
    Zhang H; Cao P; Wang K; Liu Y; Li Y; Yang B; Chen X; Xu B
    Waste Manag; 2024 Apr; 179():12-21. PubMed ID: 38447255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges for critical raw material recovery from WEEE - The case study of gallium.
    Ueberschaar M; Otto SJ; Rotter VS
    Waste Manag; 2017 Feb; 60():534-545. PubMed ID: 28089397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.
    Swain B; Mishra C; Kang L; Park KS; Lee CG; Hong HS
    Environ Res; 2015 Apr; 138():401-8. PubMed ID: 25769129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the behavior of clusters in the physical recovery of GaAs scrap.
    Yu H; Chen X; Xu B; Yang B; Jiang W; Tian Y; Wang L; Wang W
    J Environ Manage; 2024 Feb; 352():120049. PubMed ID: 38232592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Process of Direct Zinc Oxide Production by Carbothermal Reduction of Zinc Ash.
    Gao J; Wang H; Wang J; Zhang Y; Wang F; Yang S; Li S
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.
    Swain B; Mishra C; Lee CG; Park KS; Lee KJ
    Environ Res; 2015 Jul; 140():704-13. PubMed ID: 26094059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eco-friendly treatment of copper smelting flue dust for recovering multiple heavy metals with economic and environmental benefits.
    Che J; Zhang W; Deen KM; Wang C
    J Hazard Mater; 2024 Mar; 465():133039. PubMed ID: 38006856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic release pathway and the interaction principle among major species in vacuum sulfide reduction roasting of copper smelting flue dust.
    Shi T; Xu B; He J; Liu X; Zuo Z
    Environ Pollut; 2023 Aug; 330():121809. PubMed ID: 37172770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of zinc and copper from copper smelter flue dust. Optimisation of sulphuric acid leaching.
    Gonzalez-Montero P; Iglesias-Gonzalez N; Romero R; Mazuelos A; Carranza F
    Environ Technol; 2020 Apr; 41(9):1093-1100. PubMed ID: 30192727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blast furnace flue dust co-processing in cement kiln - A pilot study.
    Baidya R; Kumar Ghosh S; Parlikar UV
    Waste Manag Res; 2019 Mar; 37(3):261-267. PubMed ID: 30537906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of an electric arc furnace flue dust to obtain high grade ZnO.
    Ruiz O; Clemente C; Alonso M; Alguacil FJ
    J Hazard Mater; 2007 Mar; 141(1):33-6. PubMed ID: 16876937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hazardous waste characterization among various thermal processes in South Korea: a comparative analysis.
    Shin SK; Kim WI; Jeon TW; Kang YY; Jeong SK; Yeon JM; Somasundaram S
    J Hazard Mater; 2013 Sep; 260():157-66. PubMed ID: 23747474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction.
    He Y; Ma E; Xu Z
    J Hazard Mater; 2014 Mar; 268():185-90. PubMed ID: 24491442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.