These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32585522)

  • 21. Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS.
    Torrance KW; Keenan HE; Hursthouse AS; Stirling D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):471-5. PubMed ID: 20390892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leaching characteristics and stability assessment of sequestered arsenic in flue dust based glass.
    Mahandra H; Wu C; Ghahreman A
    Chemosphere; 2021 Aug; 276():130173. PubMed ID: 33714151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental friendly technology for aluminum electrolytic capacitors recycling from waste printed circuit boards.
    Wang J; Xu Z
    J Hazard Mater; 2017 Mar; 326():1-9. PubMed ID: 27987444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    J Hazard Mater; 2011 Oct; 194():378-84. PubMed ID: 21872390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery of lead from lead paste in spent lead acid battery by hydrometallurgical desulfurization and vacuum thermal reduction.
    Ma Y; Qiu K
    Waste Manag; 2015 Jun; 40():151-6. PubMed ID: 25818382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent.
    Wu CC; Chang FC; Chen WS; Tsai MS; Wang YN
    J Environ Manage; 2014 Oct; 143():208-13. PubMed ID: 24921184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel process for recovering valuable metals from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Environ Sci Technol; 2009 Dec; 43(23):8974-8. PubMed ID: 19943675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting.
    Avarmaa K; Yliaho S; Taskinen P
    Waste Manag; 2018 Jan; 71():400-410. PubMed ID: 29032002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium-Aluminum Example.
    Løvik AN; Restrepo E; Müller DB
    Environ Sci Technol; 2016 Aug; 50(16):8453-61. PubMed ID: 27400378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-fixation of flue gas from thermal power plants with algal biomass: Overview and research perspectives.
    Singh HM; Kothari R; Gupta R; Tyagi VV
    J Environ Manage; 2019 Sep; 245():519-539. PubMed ID: 30803750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of yellow phosphorus slag in resource recovery and environmental remediation: A review.
    Liu X; Liu X; Zhang Z
    J Environ Manage; 2024 Jan; 349():119397. PubMed ID: 37897903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of SO
    Jia L; Li Z; Yu Q; Gao J; Liu C; Liu T; Ning P; Wang F
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):23270-23280. PubMed ID: 32335836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.
    Lee WR; Eom Y; Lee TG
    Waste Manag; 2017 Feb; 60():546-551. PubMed ID: 28024896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yellow phosphorus and Potash for SO
    Alzaky MAM; Ahmed SSE; Basheer RA; Siddig R; Ibraheem TA; Kashif M; Wang F; Lu H; Tan J; Li D
    Environ Technol; 2021 Jun; ():1-9. PubMed ID: 34110267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.
    Wu JY; Chang FC; Wang HP; Tsai MJ; Ko CH; Chen CC
    Environ Technol; 2015; 36(23):2952-8. PubMed ID: 25191877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of gas-particle partition of dioxins in flue gas II: estimation of gas-particle partition of dioxins in dust-rich flue gas by parallel sampling with different conditions.
    Yokohama N; Otaka H; Nakata M
    J Hazard Mater; 2008 May; 153(1-2):404-11. PubMed ID: 18180105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
    Zhan L; Xu Z
    Environ Sci Technol; 2014 Dec; 48(24):14092-102. PubMed ID: 25407107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One Step Interface Activation of ZnS Using Cupric Ions for Mercury Recovery from Nonferrous Smelting Flue Gas.
    Liao Y; Xu H; Liu W; Ni H; Zhang X; Zhai A; Quan Z; Qu Z; Yan N
    Environ Sci Technol; 2019 Apr; 53(8):4511-4518. PubMed ID: 30855949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Pilot-plant testing for flue gas desulfurization and dust removal by activated coke].
    Zhai SP; Liu J; Xin CX; Tang SS; Zhang P; Xiao YG; Ma ZF
    Huan Jing Ke Xue; 2006 May; 27(5):850-4. PubMed ID: 16850821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.