These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 32585540)
1. Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - A case study for silver and titanium dioxide representative materials. Sørensen SN; Wigger H; Zabeo A; Semenzin E; Hristozov D; Nowack B; Spurgeon DJ; Baun A Aquat Toxicol; 2020 Aug; 225():105543. PubMed ID: 32585540 [TBL] [Abstract][Full Text] [Related]
2. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
3. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO Hong H; Adam V; Nowack B Environ Toxicol Chem; 2021 Sep; 40(9):2629-2639. PubMed ID: 34171135 [TBL] [Abstract][Full Text] [Related]
4. Species sensitivity weighted distribution for ecological risk assessment of engineered nanomaterials: the n-TiO2 case study. Semenzin E; Lanzellotto E; Hristozov D; Critto A; Zabeo A; Giubilato E; Marcomini A Environ Toxicol Chem; 2015 Nov; 34(11):2644-59. PubMed ID: 26058704 [TBL] [Abstract][Full Text] [Related]
5. Systematic Consideration of Parameter Uncertainty and Variability in Probabilistic Species Sensitivity Distributions. Wigger H; Kawecki D; Nowack B; Adam V Integr Environ Assess Manag; 2020 Mar; 16(2):211-222. PubMed ID: 31535755 [TBL] [Abstract][Full Text] [Related]
6. Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Capdevielle M; Van Egmond R; Whelan M; Versteeg D; Hofmann-Kamensky M; Inauen J; Cunningham V; Woltering D Integr Environ Assess Manag; 2008 Jan; 4(1):15-23. PubMed ID: 18260205 [TBL] [Abstract][Full Text] [Related]
7. Can Chemical Toxicity in Saltwater Be Predicted from Toxicity in Freshwater? A Comprehensive Evaluation Using Species Sensitivity Distributions. Yanagihara M; Hiki K; Iwasaki Y Environ Toxicol Chem; 2022 Aug; 41(8):2021-2027. PubMed ID: 35502940 [TBL] [Abstract][Full Text] [Related]
8. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models. Awkerman JA; Raimondo S; Jackson CR; Barron MG Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839 [TBL] [Abstract][Full Text] [Related]
9. The relative sensitivity of freshwater species to antimony(III): Implications for water quality guidelines and ecological risk assessments. Obiakor MO; Tighe M; Wang Z; Ezeonyejiaku CD; Pereg L; Wilson SC Environ Sci Pollut Res Int; 2017 Nov; 24(32):25276-25290. PubMed ID: 28929352 [TBL] [Abstract][Full Text] [Related]
10. Assessing nanomaterial exposures in aquatic ecotoxicological testing: Framework and case studies based on dispersion and dissolution. Kennedy AJ; Coleman JG; Diamond SA; Melby NL; Bednar AJ; Harmon A; Collier ZA; Moser R Nanotoxicology; 2017 May; 11(4):546-557. PubMed ID: 28463032 [TBL] [Abstract][Full Text] [Related]
11. A critical evaluation of the fish early-life stage toxicity test for engineered nanomaterials: experimental modifications and recommendations. Shaw BJ; Liddle CC; Windeatt KM; Handy RD Arch Toxicol; 2016 Sep; 90(9):2077-2107. PubMed ID: 27318802 [TBL] [Abstract][Full Text] [Related]
12. Environmental risk assessment of zinc in European freshwaters: a critical appraisal. Van Sprang PA; Verdonck FA; Van Assche F; Regoli L; De Schamphelaere KA Sci Total Environ; 2009 Oct; 407(20):5373-91. PubMed ID: 19631966 [TBL] [Abstract][Full Text] [Related]
13. Acute waterborne and chronic sediment toxicity of silver and titanium dioxide nanomaterials towards the oligochaete, Lumbriculus variegatus. Little S; Johnston HJ; Stone V; Fernandes TF NanoImpact; 2021 Jan; 21():100291. PubMed ID: 35559780 [TBL] [Abstract][Full Text] [Related]
14. Environmental risk assessment of engineered nano-SiO Wang Y; Nowack B Environ Toxicol Chem; 2018 May; 37(5):1387-1395. PubMed ID: 29315795 [TBL] [Abstract][Full Text] [Related]
15. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Hund-Rinke K; Baun A; Cupi D; Fernandes TF; Handy R; Kinross JH; Navas JM; Peijnenburg W; Schlich K; Shaw BJ; Scott-Fordsmand JJ Nanotoxicology; 2016 Dec; 10(10):1442-1447. PubMed ID: 27592624 [TBL] [Abstract][Full Text] [Related]
16. A re-evaluation of fifteen years of European risk assessment using effect models. De Laender F; Van Sprang P; Janssen CR Environ Toxicol Chem; 2013 Mar; 32(3):594-601. PubMed ID: 23239137 [TBL] [Abstract][Full Text] [Related]
17. Chronic toxicity of aluminum, at a pH of 6, to freshwater organisms: Empirical data for the development of international regulatory standards/criteria. Cardwell AS; Adams WJ; Gensemer RW; Nordheim E; Santore RC; Ryan AC; Stubblefield WA Environ Toxicol Chem; 2018 Jan; 37(1):36-48. PubMed ID: 28667768 [TBL] [Abstract][Full Text] [Related]