These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32586016)

  • 1. Biotransformation of Carboxylic Acids to Alcohols: Characterization of
    Scully SM; Orlygsson J
    Microorganisms; 2020 Jun; 8(6):. PubMed ID: 32586016
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of Culture Conditions on the Bioreduction of Organic Acids to Alcohols by
    Scully SM; Brown AE; Mueller-Hilger Y; Ross AB; Örlygsson J
    Microorganisms; 2021 Jan; 9(1):. PubMed ID: 33445711
    [No Abstract]   [Full Text] [Related]  

  • 3. Biotransformation of organic acids to their corresponding alcohols by Thermoanaerobacter pseudoethanolicus.
    Scully SM; Brown A; Ross AB; Orlygsson J
    Anaerobe; 2019 Jun; 57():28-31. PubMed ID: 30876932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branched-chain amino acid catabolism of Thermoanaerobacter strain AK85 and the influence of culture conditions on branched-chain alcohol formation.
    Scully SM; Orlygsson J
    Amino Acids; 2019 Jul; 51(7):1039-1054. PubMed ID: 31134352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological Prospects of
    Orlygsson J; Scully SM
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dataset describing the influence of culture conditions on the bioreduction of organic acids to alcohols by
    Orlygsson J; Scully SM
    Data Brief; 2024 Feb; 52():109962. PubMed ID: 38152501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Characterization of an acidotolerant, thermophilic Thermoanaerobacter sp. xyl-d with a high xylose conversion].
    Zhang W; Ma S; Deng Y; Zhang H
    Wei Sheng Wu Xue Bao; 2011 Nov; 51(11):1510-9. PubMed ID: 22260049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Draft genome of
    Abraham CA; Bradley KM; Scully SM; Orlygsson J; Dube D; Benner SA
    Microbiol Resour Announc; 2024 Oct; 13(10):e0117523. PubMed ID: 39194266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture.
    Liu F; Wu W; Tran-Gyamfi MB; Jaryenneh JD; Zhuang X; Davis RW
    Microb Cell Fact; 2017 Nov; 16(1):192. PubMed ID: 29121935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation.
    Perez JM; Richter H; Loftus SE; Angenent LT
    Biotechnol Bioeng; 2013 Apr; 110(4):1066-77. PubMed ID: 23172270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branched-chain amino acid catabolism of Thermoanaerobacter pseudoethanolicus reveals potential route to branched-chain alcohol formation.
    Scully SM; Orlygsson J
    Extremophiles; 2020 Jan; 24(1):121-133. PubMed ID: 31654148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures.
    Steinbusch KJ; Hamelers HV; Buisman CJ
    Water Res; 2008 Sep; 42(15):4059-66. PubMed ID: 18725163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alcohol dehydrogenases AdhE and AdhB with broad substrate ranges are important enzymes for organic acid reduction in Thermoanaerobacter sp. strain X514.
    Hitschler L; Nissen LS; Kuntz M; Basen M
    Biotechnol Biofuels; 2021 Sep; 14(1):187. PubMed ID: 34563250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoanaerobacter species differ in their potential to reduce organic acids to their corresponding alcohols.
    Hitschler L; Kuntz M; Langschied F; Basen M
    Appl Microbiol Biotechnol; 2018 Oct; 102(19):8465-8476. PubMed ID: 29987342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branched-chain alcohol formation by thermophilic bacteria within the genera of Thermoanaerobacter and Caldanaerobacter.
    Scully SM; Iloranta P; Myllymaki P; Orlygsson J
    Extremophiles; 2015 Jul; 19(4):809-18. PubMed ID: 25997396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols.
    Liu K; Atiyeh HK; Stevenson BS; Tanner RS; Wilkins MR; Huhnke RL
    Bioresour Technol; 2014; 152():337-46. PubMed ID: 24315938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoanaerobacter thermohydrosulfuricus WC1 shows protein complement stability during fermentation of key lignocellulose-derived substrates.
    Verbeke TJ; Spicer V; Krokhin OV; Zhang X; Schellenberg JJ; Fristensky B; Wilkins JA; Levin DB; Sparling R
    Appl Environ Microbiol; 2014 Mar; 80(5):1602-15. PubMed ID: 24362431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dataset describing the amino acid catabolism of
    Orlygsson J; Scully SM
    Data Brief; 2024 Feb; 52():110017. PubMed ID: 38235181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidogenesis of dairy wastewater at various pH levels.
    Yu HG; Fang HH
    Water Sci Technol; 2002; 45(10):201-6. PubMed ID: 12188545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Analysis of Carbon Monoxide Tolerance among Thermoanaerobacter Species.
    Alves JI; Alves MM; Plugge CM; Stams AJ; Sousa DZ
    Front Microbiol; 2016; 7():1330. PubMed ID: 27621723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.