BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32586644)

  • 1. Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates.
    Zhu L; Li P; Sun T; Kong M; Li X; Ali S; Liu W; Fan S; Qiao J; Li S; Peng L; He B; Jin M; Xiao W; Cao L
    Bioresour Technol; 2020 Oct; 313():123724. PubMed ID: 32586644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpressing CCW12 in Saccharomyces cerevisiae enables highly efficient ethanol production from lignocellulose hydrolysates.
    Kong M; Li X; Li T; Zhao X; Jin M; Zhou X; Gu H; Mrša V; Xiao W; Cao L
    Bioresour Technol; 2021 Oct; 337():125487. PubMed ID: 34320766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpressing
    Wang H; Cao L; Li Q; Wijayawardene NN; Zhao J; Cheng M; Li QR; Li X; Promputtha I; Kang YQ
    Front Microbiol; 2022; 13():1085114. PubMed ID: 36601405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains.
    Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U
    Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain.
    Huang S; Liu T; Peng B; Geng A
    Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing xylose-fermentation capacity of engineered Saccharomyces cerevisiae by multistep evolutionary engineering in inhibitor-rich lignocellulose hydrolysate.
    Demeke MM; Echemendia D; Belo E; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38604750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering.
    Demeke MM; Dietz H; Li Y; Foulquié-Moreno MR; Mutturi S; Deprez S; Den Abt T; Bonini BM; Liden G; Dumortier F; Verplaetse A; Boles E; Thevelein JM
    Biotechnol Biofuels; 2013 Jun; 6(1):89. PubMed ID: 23800147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass.
    Sato TK; Liu T; Parreiras LS; Williams DL; Wohlbach DJ; Bice BD; Ong IM; Breuer RJ; Qin L; Busalacchi D; Deshpande S; Daum C; Gasch AP; Hodge DB
    Appl Environ Microbiol; 2014 Jan; 80(2):540-54. PubMed ID: 24212571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High titer (>100 g/L) ethanol production from pretreated corn stover hydrolysate by modified yeast strains.
    Zhao R; Li H; Li Q; Jia Z; Li S; Zhao L; Li S; Wang Y; Fan W; Ren R; Yuan Z; Yang M; Wang X; Zhao X; Xiao W; Zhao J; Cao L
    Bioresour Technol; 2024 Jan; 391(Pt B):129993. PubMed ID: 37944621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae.
    Lee YG; Jin YS; Cha YL; Seo JH
    Bioresour Technol; 2017 Mar; 228():355-361. PubMed ID: 28088640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.
    Sanda T; Hasunuma T; Matsuda F; Kondo A
    Bioresour Technol; 2011 Sep; 102(17):7917-24. PubMed ID: 21704512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C; Marcet M; Almazán O; Jönsson LJ
    Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production.
    Demeke MM; Dumortier F; Li Y; Broeckx T; Foulquié-Moreno MR; Thevelein JM
    Biotechnol Biofuels; 2013 Aug; 6(1):120. PubMed ID: 23971950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.
    Romaní A; Pereira F; Johansson B; Domingues L
    Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast.
    Kumar S; Dheeran P; Singh SP; Mishra IM; Adhikari DK
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):39-47. PubMed ID: 25090978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.