These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32586661)

  • 1. Surfactant-assisted in situ transesterification of wet Rhodotorula glutinis biomass.
    Chen SJ; Kuan IC; Tu YF; Lee SL; Yu CY
    J Biosci Bioeng; 2020 Oct; 130(4):397-401. PubMed ID: 32586661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: Oil yield, fatty acid profile, fuel properties.
    Khot M; Ghosh D
    J Basic Microbiol; 2017 Apr; 57(4):345-352. PubMed ID: 28155998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
    Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA
    Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ transesterification of highly wet microalgae using hydrochloric acid.
    Kim B; Im H; Lee JW
    Bioresour Technol; 2015 Jun; 185():421-5. PubMed ID: 25769690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production.
    Park J; Kim B; Lee JW
    Bioresour Technol; 2016 Dec; 221():55-60. PubMed ID: 27639224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.
    Cao H; Zhang Z; Wu X; Miao X
    Biomed Res Int; 2013; 2013():930686. PubMed ID: 24195081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ pyrogenic production of biodiesel from swine fat.
    Lee J; Tsang YF; Jung JM; Oh JI; Kim HW; Kwon EE
    Bioresour Technol; 2016 Nov; 220():442-447. PubMed ID: 27611027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiesel Production from Citrillus colocynthis Oil Using Enzymatic Based Catalytic Reaction and Characterization Studies.
    Nehdi IA; Sbihi HM; Blidi LE; Rashid U; Tan CP; Al-Resayes SI
    Protein Pept Lett; 2018; 25(2):164-170. PubMed ID: 28240158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of dried Aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification.
    Kakkad H; Khot M; Zinjarde S; RaviKumar A; Ravi Kumar V; Kulkarni BD
    Bioresour Technol; 2015 Dec; 197():502-7. PubMed ID: 26362462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass.
    Yellapu SK; Kaur R; Tyagi RD
    Bioresour Technol; 2017 Jan; 224():365-372. PubMed ID: 27866805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial biodiesel production by direct methanolysis of oleaginous biomass.
    Thliveros P; Uçkun Kiran E; Webb C
    Bioresour Technol; 2014 Apr; 157():181-7. PubMed ID: 24556371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of sago processing wastewater into biodiesel: Optimization of lipid production by an oleaginous yeast, Candida tropicalis ASY2 and its transesterification process using response surface methodology.
    Thangavelu K; Sundararaju P; Srinivasan N; Uthandi S
    Microb Cell Fact; 2021 Aug; 20(1):167. PubMed ID: 34446015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of variables affecting the direct transesterification of wet biomass from Nannochloropsis oceanica using ionic liquid as a co-solvent.
    Lee H; Shin WS; Jung JY; Kim CW; Lee JW; Kwon JH; Yang JW
    Bioprocess Biosyst Eng; 2015 May; 38(5):981-7. PubMed ID: 25634438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition.
    Abedini Najafabadi H; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Oct; 193():90-6. PubMed ID: 26117240
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Gufrana T; Islam H; Khare S; Pandey A; P R
    Prep Biochem Biotechnol; 2023; 53(2):120-135. PubMed ID: 35499507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.
    Cheng J; Huang R; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Oct; 170():69-75. PubMed ID: 25125194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant.
    Pollardo AA; Lee HS; Lee D; Kim S; Kim J
    BMC Biotechnol; 2017 Sep; 17(1):70. PubMed ID: 28888230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprospecting microbes for single-cell oil production from starchy wastes.
    Chaturvedi S; Kumari A; Nain L; Khare SK
    Prep Biochem Biotechnol; 2018 Mar; 48(3):296-302. PubMed ID: 29424627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel.
    Son J; Kim B; Park J; Yang J; Lee JW
    Bioresour Technol; 2018 Jul; 259():465-468. PubMed ID: 29573886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.