These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 32586957)
1. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Wang S; Chen A; Xie K; Yang X; Luo Z; Chen J; Zeng D; Ren Y; Yang C; Wang L; Feng H; López-Arredondo DL; Herrera-Estrella LR; Xu G Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16649-16659. PubMed ID: 32586957 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504 [TBL] [Abstract][Full Text] [Related]
3. Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice. Drechsler N; Courty PE; Brulé D; Kunze R Mycorrhiza; 2018 Jan; 28(1):93-100. PubMed ID: 28993893 [TBL] [Abstract][Full Text] [Related]
4. The Potassium Transporter SlHAK10 Is Involved in Mycorrhizal Potassium Uptake. Liu J; Liu J; Liu J; Cui M; Huang Y; Tian Y; Chen A; Xu G Plant Physiol; 2019 May; 180(1):465-479. PubMed ID: 30760639 [TBL] [Abstract][Full Text] [Related]
5. The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. Koegel S; Ait Lahmidi N; Arnould C; Chatagnier O; Walder F; Ineichen K; Boller T; Wipf D; Wiemken A; Courty PE New Phytol; 2013 May; 198(3):853-865. PubMed ID: 23461653 [TBL] [Abstract][Full Text] [Related]
6. Rapid nitrogen transfer in the Sorghum bicolor-Glomus mosseae arbuscular mycorrhizal symbiosis. Koegel S; Boller T; Lehmann MF; Wiemken A; Courty PE Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23759552 [TBL] [Abstract][Full Text] [Related]
7. OsADK1, a novel kinase regulating arbuscular mycorrhizal symbiosis in rice. Guo R; Wu YN; Liu CC; Liu YN; Tian L; Cheng JF; Pan Z; Wang D; Wang B New Phytol; 2022 Apr; 234(1):256-268. PubMed ID: 35133010 [TBL] [Abstract][Full Text] [Related]
8. Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis. Corrêa A; Cruz C; Pérez-Tienda J; Ferrol N Plant Sci; 2014 May; 221-222():29-41. PubMed ID: 24656333 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. Nouri E; Breuillin-Sessoms F; Feller U; Reinhardt D PLoS One; 2014; 9(6):e90841. PubMed ID: 24608923 [TBL] [Abstract][Full Text] [Related]
10. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi. Tian H; Yuan X; Duan J; Li W; Zhai B; Gao Y PLoS One; 2017; 12(2):e0172154. PubMed ID: 28207830 [TBL] [Abstract][Full Text] [Related]
11. [Identification, expression and DNA variation analysis of high affinity nitrate transporter Zhao S; Guo Z; Zhu L; Fan J; Yang B; Chai W; Sun H; Feng F; Liang Y; Zou C; Jiang X; Zhao W; Lü J; Zhang C Sheng Wu Gong Cheng Xue Bao; 2023 Jul; 39(7):2743-2761. PubMed ID: 37584129 [TBL] [Abstract][Full Text] [Related]
12. Activation of basal defense mechanisms of rice plants by Glomus intraradices does not affect the arbuscular mycorrhizal symbiosis. Campos-Soriano L; García-Garrido JM; San Segundo B New Phytol; 2010 Oct; 188(2):597-614. PubMed ID: 20659300 [TBL] [Abstract][Full Text] [Related]
13. A mycorrhiza-specific H Liu J; Chen J; Xie K; Tian Y; Yan A; Liu J; Huang Y; Wang S; Zhu Y; Chen A; Xu G Plant Cell Environ; 2020 Apr; 43(4):1069-1083. PubMed ID: 31899547 [TBL] [Abstract][Full Text] [Related]
14. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Tang Z; Fan X; Li Q; Feng H; Miller AJ; Shen Q; Xu G Plant Physiol; 2012 Dec; 160(4):2052-63. PubMed ID: 23093362 [TBL] [Abstract][Full Text] [Related]
15. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency. Wang X; Zhao S; Bücking H Ann Bot; 2016 Jul; 118(1):11-21. PubMed ID: 27208734 [TBL] [Abstract][Full Text] [Related]
16. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Jiang Y; Wang W; Xie Q; Liu N; Liu L; Wang D; Zhang X; Yang C; Chen X; Tang D; Wang E Science; 2017 Jun; 356(6343):1172-1175. PubMed ID: 28596307 [TBL] [Abstract][Full Text] [Related]
17. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Gutjahr C; Radovanovic D; Geoffroy J; Zhang Q; Siegler H; Chiapello M; Casieri L; An K; An G; Guiderdoni E; Kumar CS; Sundaresan V; Harrison MJ; Paszkowski U Plant J; 2012 Mar; 69(5):906-20. PubMed ID: 22077667 [TBL] [Abstract][Full Text] [Related]
18. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Handa Y; Nishide H; Takeda N; Suzuki Y; Kawaguchi M; Saito K Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. Calabrese S; Kohler A; Niehl A; Veneault-Fourrey C; Boller T; Courty PE Plant Cell Physiol; 2017 Jun; 58(6):1003-1017. PubMed ID: 28387868 [TBL] [Abstract][Full Text] [Related]
20. Earliest colonization events of Rhizophagus irregularis in rice roots occur preferentially in previously uncolonized cells. Kobae Y; Fujiwara T Plant Cell Physiol; 2014 Aug; 55(8):1497-510. PubMed ID: 24899551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]