These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. ACE2 and TMPRSS2 Potential Involvement in Genetic Susceptibility to SARS-COV-2 in Cancer Patients. Ravaioli S; Tebaldi M; Fonzi E; Angeli D; Mazza M; Nicolini F; Lucchesi A; Fanini F; Pirini F; Tumedei MM; Cerchione C; Viale P; Sambri V; Martinelli G; Bravaccini S Cell Transplant; 2020; 29():963689720968749. PubMed ID: 33108902 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Ali A; Vijayan R Sci Rep; 2020 Aug; 10(1):14214. PubMed ID: 32848162 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the genetic variation in ACE2 on the structural recognition by the novel coronavirus (SARS-CoV-2). Guo X; Chen Z; Xia Y; Lin W; Li H J Transl Med; 2020 Aug; 18(1):321. PubMed ID: 32831104 [TBL] [Abstract][Full Text] [Related]
6. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194 [TBL] [Abstract][Full Text] [Related]
7. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Hoffmann M; Kleine-Weber H; Schroeder S; Krüger N; Herrler T; Erichsen S; Schiergens TS; Herrler G; Wu NH; Nitsche A; Müller MA; Drosten C; Pöhlmann S Cell; 2020 Apr; 181(2):271-280.e8. PubMed ID: 32142651 [TBL] [Abstract][Full Text] [Related]
8. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Damas J; Hughes GM; Keough KC; Painter CA; Persky NS; Corbo M; Hiller M; Koepfli KP; Pfenning AR; Zhao H; Genereux DP; Swofford R; Pollard KS; Ryder OA; Nweeia MT; Lindblad-Toh K; Teeling EC; Karlsson EK; Lewin HA Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22311-22322. PubMed ID: 32826334 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts. Zhai X; Sun J; Yan Z; Zhang J; Zhao J; Zhao Z; Gao Q; He WT; Veit M; Su S J Virol; 2020 Jul; 94(15):. PubMed ID: 32404529 [TBL] [Abstract][Full Text] [Related]
10. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Yoshimoto FK Protein J; 2020 Jun; 39(3):198-216. PubMed ID: 32447571 [TBL] [Abstract][Full Text] [Related]
11. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. Liu Z; Xiao X; Wei X; Li J; Yang J; Tan H; Zhu J; Zhang Q; Wu J; Liu L J Med Virol; 2020 Jun; 92(6):595-601. PubMed ID: 32100877 [TBL] [Abstract][Full Text] [Related]
12. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. Zhang S; Liu Y; Wang X; Yang L; Li H; Wang Y; Liu M; Zhao X; Xie Y; Yang Y; Zhang S; Fan Z; Dong J; Yuan Z; Ding Z; Zhang Y; Hu L J Hematol Oncol; 2020 Sep; 13(1):120. PubMed ID: 32887634 [TBL] [Abstract][Full Text] [Related]
13. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
14. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Datta PK; Liu F; Fischer T; Rappaport J; Qin X Theranostics; 2020; 10(16):7448-7464. PubMed ID: 32642005 [TBL] [Abstract][Full Text] [Related]
15. SARS-CoV-2 host tropism: An in silico analysis of the main cellular factors. Rangel HR; Ortega JT; Maksoud S; Pujol FH; Serrano ML Virus Res; 2020 Nov; 289():198154. PubMed ID: 32918944 [TBL] [Abstract][Full Text] [Related]
16. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Behloul N; Baha S; Shi R; Meng J Virus Res; 2020 Sep; 286():198058. PubMed ID: 32531235 [TBL] [Abstract][Full Text] [Related]
17. Structural and functional modelling of SARS-CoV-2 entry in animal models. Brooke GN; Prischi F Sci Rep; 2020 Sep; 10(1):15917. PubMed ID: 32985513 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites. Qiao B; Olvera de la Cruz M ACS Nano; 2020 Aug; 14(8):10616-10623. PubMed ID: 32806067 [TBL] [Abstract][Full Text] [Related]
19. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Trezza A; Iovinelli D; Santucci A; Prischi F; Spiga O Sci Rep; 2020 Aug; 10(1):13866. PubMed ID: 32807895 [TBL] [Abstract][Full Text] [Related]
20. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Fantini J; Chahinian H; Yahi N Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32405156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]