These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32587278)

  • 1. Fixed-Point Fluid structure interaction analysis BASED ON geometrically exact approach.
    Yu M; Nie X; Yang G; Zhong P
    Sci Rep; 2020 Jun; 10(1):10322. PubMed ID: 32587278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.
    Borazjani I; Ge L; Sotiropoulos F
    J Comput Phys; 2008 Aug; 227(16):7587-7620. PubMed ID: 20981246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Concise and Geometrically Exact Planar Beam Model for Arbitrarily Large Elastic Deformation Dynamics.
    Huber G; Wollherr D; Buss M
    Front Robot AI; 2020; 7():609478. PubMed ID: 34150855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems.
    Tian FB; Dai H; Luo H; Doyle JF; Rousseau B
    J Comput Phys; 2014 Feb; 258():. PubMed ID: 24415796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
    Kamensky D; Hsu MC; Schillinger D; Evans JA; Aggarwal A; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Methods Appl Mech Eng; 2015 Feb; 284():1005-1053. PubMed ID: 25541566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-intrusive global/local approach applied to phase-field modeling of brittle fracture.
    Gerasimov T; Noii N; Allix O; De Lorenzis L
    Adv Model Simul Eng Sci; 2018; 5(1):14. PubMed ID: 31008049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the geometrically exact low-order modelling of a flexible beam: formulation and numerical tests.
    Howcroft C; Cook RG; Neild SA; Lowenberg MH; Cooper JE; Coetzee EB
    Proc Math Phys Eng Sci; 2018 Aug; 474(2216):20180423. PubMed ID: 30220870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A partition of unity approach to fluid mechanics and fluid-structure interaction.
    Balmus M; Massing A; Hoffman J; Razavi R; Nordsletten DA
    Comput Methods Appl Mech Eng; 2020 Apr; 362():. PubMed ID: 34093912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of dual time-stepping strategy of the gas-kinetic scheme for unsteady flow simulations.
    Li J; Zhong C; Wang Y; Zhuo C
    Phys Rev E; 2017 May; 95(5-1):053307. PubMed ID: 28618527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of unsteady blood flows in a patient-specific compliant pulmonary artery with a highly parallel monolithically coupled fluid-structure interaction algorithm.
    Kong F; Kheyfets V; Finol E; Cai XC
    Int J Numer Method Biomed Eng; 2019 Jul; 35(7):e3208. PubMed ID: 30989794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An augmented iterative method for identifying a stress-free reference configuration in image-based biomechanical modeling.
    Rausch MK; Genet M; Humphrey JD
    J Biomech; 2017 Jun; 58():227-231. PubMed ID: 28549603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows.
    Liu S; Cao J; Zhong C
    Phys Rev E; 2020 Sep; 102(3-1):033310. PubMed ID: 33075992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale-to-scale energy transfer rate in compressible two-fluid plasma turbulence.
    Banerjee S; Andrés N
    Phys Rev E; 2020 Apr; 101(4-1):043212. PubMed ID: 32422726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient immersed-boundary lattice Boltzmann scheme for fluid-structure interaction problems involving large solid deformation.
    Cai Y; Wang S; Lu J; Li S; Zhang G
    Phys Rev E; 2019 Feb; 99(2-1):023310. PubMed ID: 30934334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully-coupled aeroelastic simulation with fluid compressibility - For application to vocal fold vibration.
    Yang J; Wang X; Krane M; Zhang LT
    Comput Methods Appl Mech Eng; 2017 Mar; 315():584-606. PubMed ID: 29527067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of a fixed-grid and arbitrary Lagrangian-Eulerian methods on modelling fluid-structure interaction of the aortic valve.
    Joda A; Jin Z; Summers J; Korossis S
    Proc Inst Mech Eng H; 2019 May; 233(5):544-553. PubMed ID: 30922162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical schemes for unsteady fluid flow through collapsible tubes.
    Elad D; Katz D; Kimmel E; Einav S
    J Biomed Eng; 1991 Jan; 13(1):10-8. PubMed ID: 2002666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling schemes for the FSI forward prediction challenge: Comparative study and validation.
    Landajuela M; Vidrascu M; Chapelle D; Fernández MA
    Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27342099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.