These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32587584)

  • 1. Low-Temperature Adaptation of the Snow Alga
    Zheng Y; Xue C; Chen H; He C; Wang Q
    Front Microbiol; 2020; 11():1233. PubMed ID: 32587584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold Adaptation Mechanisms of a Snow Alga
    Peng Z; Liu G; Huang K
    Front Microbiol; 2020; 11():611080. PubMed ID: 33584575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae).
    Lukeš M; Procházková L; Shmidt V; Nedbalová L; Kaftan D
    FEMS Microbiol Ecol; 2014 Aug; 89(2):303-15. PubMed ID: 24698015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources.
    Hounslow E; Evans CA; Pandhal J; Sydney T; Couto N; Pham TK; Gilmour DJ; Wright PC
    Biotechnol Biofuels; 2021 May; 14(1):121. PubMed ID: 34022944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrigendum: Low-Temperature Adaptation of the Snow Alga
    Zheng Y; Xue C; Chen H; He C; Wang Q
    Front Microbiol; 2021; 12():698706. PubMed ID: 34025633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry.
    Stibal M; Elster J; Sabacká M; Kastovská K
    FEMS Microbiol Ecol; 2007 Feb; 59(2):265-73. PubMed ID: 17313577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triacylglycerol Production in the Snow Algae Chlamydomonas nivalis under Different Nutrient Conditions.
    Liu YC; Nakamura Y
    Lipids; 2019 Apr; 54(4):255-262. PubMed ID: 31025716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic adaptation to polar life: Energy balance, photoprotection and genetic redundancy.
    Hüner NPA; Smith DR; Cvetkovska M; Zhang X; Ivanov AG; Szyszka-Mroz B; Kalra I; Morgan-Kiss R
    J Plant Physiol; 2022 Jan; 268():153557. PubMed ID: 34922115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LHCSR1-dependent fluorescence quenching is mediated by excitation energy transfer from LHCII to photosystem I in
    Kosuge K; Tokutsu R; Kim E; Akimoto S; Yokono M; Ueno Y; Minagawa J
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3722-3727. PubMed ID: 29555769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow.
    Remias D; Pichrtová M; Pangratz M; Lütz C; Holzinger A
    FEMS Microbiol Ecol; 2016 Apr; 92(4):fiw030. PubMed ID: 26884467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation.
    Remias D; Karsten U; Lütz C; Leya T
    Protoplasma; 2010 Jul; 243(1-4):73-86. PubMed ID: 20229328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoprotection mechanisms under different CO
    Ueno Y; Shimakawa G; Aikawa S; Miyake C; Akimoto S
    Photosynth Res; 2020 Jun; 144(3):397-407. PubMed ID: 32377933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii.
    Minagawa J; Tokutsu R
    Plant J; 2015 May; 82(3):413-428. PubMed ID: 25702778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille.
    Gorton HL; Williams WE; Vogelmann TC
    Photochem Photobiol; 2001 Jun; 73(6):611-20. PubMed ID: 11421066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves.
    Yanhui C; Hongrui W; Beining Z; Shixing G; Zihan W; Yue W; Huihui Z; Guangyu S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111136. PubMed ID: 32798755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.
    Berger H; Blifernez-Klassen O; Ballottari M; Bassi R; Wobbe L; Kruse O
    Mol Plant; 2014 Oct; 7(10):1545-59. PubMed ID: 25038233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii.
    Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE
    Aquat Toxicol; 2019 May; 210():117-128. PubMed ID: 30849631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LC-MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers.
    Řezanka T; Nedbalová L; Kolouchová I; Sigler K
    Phytochemistry; 2013 Apr; 88():34-42. PubMed ID: 23398889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecophysiology of
    Procházková L; Remias D; Řezanka T; Nedbalová L
    Microorganisms; 2019 Oct; 7(10):. PubMed ID: 31658718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+)-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga.
    Chen H; Hu J; Qiao Y; Chen W; Rong J; Zhang Y; He C; Wang Q
    Sci Rep; 2015 Oct; 5():15117. PubMed ID: 26450399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.