BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32587789)

  • 1. Tissue Engineering of Axially Vascularized Soft-Tissue Flaps with a Poly-(ɛ-Caprolactone) Nanofiber-Hydrogel Composite.
    Henn D; Chen K; Fischer K; Rauh A; Barrera JA; Kim YJ; Martin RA; Hannig M; Niedoba P; Reddy SK; Mao HQ; Kneser U; Gurtner GC; Sacks JM; Schmidt VJ
    Adv Wound Care (New Rochelle); 2020 Jul; 9(7):365-377. PubMed ID: 32587789
    [No Abstract]   [Full Text] [Related]  

  • 2. Haemodynamically stimulated and in vivo generated axially vascularized soft-tissue free flaps for closure of complex defects: Evaluation in a small animal model.
    Schmidt VJ; Wietbrock JO; Leibig N; Hernekamp JF; Henn D; Radu CA; Kneser U
    J Tissue Eng Regen Med; 2018 Mar; 12(3):622-632. PubMed ID: 28509443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen-Elastin and Collagen-Glycosaminoglycan Scaffolds Promote Distinct Patterns of Matrix Maturation and Axial Vascularization in Arteriovenous Loop-Based Soft Tissue Flaps.
    Schmidt VJ; Wietbrock JO; Leibig N; Gloe T; Henn D; Hernekamp JF; Harhaus L; Kneser U
    Ann Plast Surg; 2017 Jul; 79(1):92-100. PubMed ID: 28542070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of Nanofiber Hydrogel Composite with Fractionated Fat Promotes Regenerative Macrophage Polarization and Vascularization for Soft-Tissue Engineering.
    Henn D; Fischer KS; Chen K; Greco AH; Martin RA; Sivaraj D; Trotsyuk AA; Mao HQ; Reddy SK; Kneser U; Gurtner GC; Schmidt VJ; Sacks JM
    Plast Reconstr Surg; 2022 Mar; 149(3):433e-444e. PubMed ID: 35196680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle.
    Zhang Q; Hubenak J; Iyyanki T; Alred E; Turza KC; Davis G; Chang EI; Branch-Brooks CD; Beahm EK; Butler CE
    Biomaterials; 2015 Dec; 73():198-213. PubMed ID: 26410787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps.
    Zhang Q; Johnson JA; Dunne LW; Chen Y; Iyyanki T; Wu Y; Chang EI; Branch-Brooks CD; Robb GL; Butler CE
    Acta Biomater; 2016 Apr; 35():166-84. PubMed ID: 26876876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofiber-hydrogel composite-mediated angiogenesis for soft tissue reconstruction.
    Li X; Cho B; Martin R; Seu M; Zhang C; Zhou Z; Choi JS; Jiang X; Chen L; Walia G; Yan J; Callanan M; Liu H; Colbert K; Morrissette-McAlmon J; Grayson W; Reddy S; Sacks JM; Mao HQ
    Sci Transl Med; 2019 May; 11(490):. PubMed ID: 31043572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Decellularized Human Dermal Scaffolds versus Bovine Collagen/Elastin Matrices for Engineering of Soft-Tissue Flaps.
    Falkner F; Mayer SA; Heuer M; Brune J; Helt H; Bigdeli AK; Dimmler A; Heimel P; Thiele W; Sleeman JP; Bergmeister H; Schneider KH; Kneser U; Thomas B
    Plast Reconstr Surg; 2024 Jan; 153(1):130-141. PubMed ID: 37014963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biostimulatory Micro-Fragmented Nanofiber-Hydrogel Composite Improves Mesenchymal Stem Cell Delivery and Soft Tissue Remodeling.
    Yao ZC; Yang YH; Kong J; Zhu Y; Li L; Chang C; Zhang C; Yin J; Chao J; Selaru FM; Reddy SK; Mao HQ
    Small; 2022 Sep; 18(36):e2202309. PubMed ID: 35948487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering vascularized flaps using adipose-derived microvascular endothelial cells and mesenchymal stem cells.
    Freiman A; Shandalov Y; Rosenfeld D; Shor E; Ben-David D; Meretzki S; Levenberg S; Egozi D
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e130-e141. PubMed ID: 28382732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanofiber amalgamated 3D poly-ε-caprolactone scaffold functionalized porous-nanoarchitectures for human meniscal tissue engineering: In vitro and in vivo biocompatibility studies.
    Gopinathan J; Pillai MM; Shanthakumari S; Gnanapoongothai S; Dinakar Rai BK; Santosh Sahanand K; Selvakumar R; Bhattacharyya A
    Nanomedicine; 2018 Oct; 14(7):2247-2258. PubMed ID: 30081102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release.
    Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L
    Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.
    Gopinathan J; Quigley AF; Bhattacharyya A; Padhye R; Kapsa RM; Nayak R; Shanks RA; Houshyar S
    J Biomed Mater Res A; 2016 Apr; 104(4):853-65. PubMed ID: 26646762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7].
    Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [De-novo generation of vascularized tissue using different configurations of vascular pedicles in perforated and closed chambers].
    Dolderer JH; Kehrer A; Schiller SM; Schröder UH; Kohler K; Schaller HE; Siegel-Axel D
    Wien Med Wochenschr; 2010 Mar; 160(5-6):139-46. PubMed ID: 20364417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microporous Polylactic Acid Scaffolds Enable Fluorescence-Based Perfusion Imaging of Intrinsic In Vivo Vascularization.
    Koepple C; Pollmann L; Pollmann NS; Schulte M; Kneser U; Gretz N; Schmidt VJ
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo generation of axially vascularized tissue in a large animal model.
    Beier JP; Horch RE; Arkudas A; Polykandriotis E; Bleiziffer O; Adamek E; Hess A; Kneser U
    Microsurgery; 2009; 29(1):42-51. PubMed ID: 18853419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New murine model of spontaneous autologous tissue engineering, combining an arteriovenous pedicle with matrix materials.
    Cronin KJ; Messina A; Knight KR; Cooper-White JJ; Stevens GW; Penington AJ; Morrison WA
    Plast Reconstr Surg; 2004 Jan; 113(1):260-9. PubMed ID: 14707645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.