These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 32588043)
21. Functional trait evolution in Sphagnum peat mosses and its relationship to niche construction. Piatkowski BT; Shaw AJ New Phytol; 2019 Jul; 223(2):939-949. PubMed ID: 30924950 [TBL] [Abstract][Full Text] [Related]
22. Mosses modify effects of warmer and wetter conditions on tree seedlings at the alpine treeline. Lett S; Teuber LM; Krab EJ; Michelsen A; Olofsson J; Nilsson MC; Wardle DA; Dorrepaal E Glob Chang Biol; 2020 Oct; 26(10):5754-5766. PubMed ID: 32715578 [TBL] [Abstract][Full Text] [Related]
23. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Karofeld E; Müür M; Vellak K Environ Sci Pollut Res Int; 2016 Jul; 23(14):13706-17. PubMed ID: 26490883 [TBL] [Abstract][Full Text] [Related]
24. High nitrogen availability reduces polyphenol content in Sphagnum peat. Bragazza L; Freeman C Sci Total Environ; 2007 May; 377(2-3):439-43. PubMed ID: 17382372 [TBL] [Abstract][Full Text] [Related]
25. Maternal transmission of cytoplasmic DNA in interspecific hybrids of peat mosses, Sphagnum (Bryophyta). Natcheva R; Cronberg N J Evol Biol; 2007 Jul; 20(4):1613-6. PubMed ID: 17584253 [TBL] [Abstract][Full Text] [Related]
26. A multi-analytical approach to studying the chemical composition of typical carbon sink samples. Astolfi ML; Massimi L; Rapa M; Plà RR; Jasan RC; Tudino MB; Canepari S; Conti ME Sci Rep; 2023 May; 13(1):7971. PubMed ID: 37198446 [TBL] [Abstract][Full Text] [Related]
27. Metal and proton adsorption capacities of natural and cloned Sphagnum mosses. Gonzalez AG; Pokrovsky OS; Beike AK; Reski R; Di Palma A; Adamo P; Giordano S; Angel Fernandez J J Colloid Interface Sci; 2016 Jan; 461():326-334. PubMed ID: 26407060 [TBL] [Abstract][Full Text] [Related]
28. The resilience and functional role of moss in boreal and arctic ecosystems. Turetsky MR; Bond-Lamberty B; Euskirchen E; Talbot J; Frolking S; McGuire AD; Tuittila ES New Phytol; 2012 Oct; 196(1):49-67. PubMed ID: 22924403 [TBL] [Abstract][Full Text] [Related]
29. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits. Jassey VEJ; Signarbieux C Glob Chang Biol; 2019 Nov; 25(11):3859-3870. PubMed ID: 31502398 [TBL] [Abstract][Full Text] [Related]
30. The role of Sphagnum mosses in the methane cycling of a boreal mire. Larmola T; Tuittila ES; Tiirola M; Nykänen H; Martikainen PJ; Yrjälä K; Tuomivirta T; Fritze H Ecology; 2010 Aug; 91(8):2356-65. PubMed ID: 20836457 [TBL] [Abstract][Full Text] [Related]
31. Sphagnum mosses from 21 ombrotrophic bogs in the athabasca bituminous sands region show no significant atmospheric contamination of "heavy metals". Shotyk W; Belland R; Duke J; Kempter H; Krachler M; Noernberg T; Pelletier R; Vile MA; Wieder K; Zaccone C; Zhang S Environ Sci Technol; 2014 Nov; 48(21):12603-11. PubMed ID: 25259407 [TBL] [Abstract][Full Text] [Related]
32. Plant succession and geochemical indices in immature peatlands in the Changbai Mountains, northeastern region of China: Implications for climate change and peatland development. Zhang L; Gałka M; Kumar A; Liu M; Knorr KH; Yu ZG Sci Total Environ; 2021 Jun; 773():143776. PubMed ID: 33261873 [TBL] [Abstract][Full Text] [Related]
33. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs. Wang G; Yu X; Bao K; Xing W; Gao C; Lin Q; Lu X Chemosphere; 2015 Jan; 119():1329-1334. PubMed ID: 24630445 [TBL] [Abstract][Full Text] [Related]
34. Contrasting phylogeographic patterns in Sphagnum fimbriatum and Sphagnum squarrosum (Bryophyta, Sphagnopsida) in Europe. Szövényi P; Hock Z; Urmi E; Schneller JJ New Phytol; 2006; 172(4):784-94. PubMed ID: 17096803 [TBL] [Abstract][Full Text] [Related]
35. Rising temperature modulates pH niches of fen species. Hájek M; Těšitel J; Tahvanainen T; Peterka T; Jiménez-Alfaro B; Jansen F; Pérez-Haase A; Garbolino E; Carbognani M; Kolari THM; Hájková P; Jandt U; Aunina L; Pawlikowski P; Ivchenko T; Tomaselli M; Tichý L; Dítě D; Plesková Z; Mikulášková E Glob Chang Biol; 2022 Feb; 28(3):1023-1037. PubMed ID: 34748262 [TBL] [Abstract][Full Text] [Related]
36. Resilience of the sorption capacity of soil organic matter during drying-wetting cycle. Kim PG; Kwon JH Chemosphere; 2020 Mar; 242():125238. PubMed ID: 31896188 [TBL] [Abstract][Full Text] [Related]
37. Contrasting diversity of testate amoebae communities in Sphagnum and brown-moss dominated patches in relation to shell counts. Lizoňová Z; Horsák M Eur J Protistol; 2017 Apr; 58():135-142. PubMed ID: 28292672 [TBL] [Abstract][Full Text] [Related]
38. Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. Pankratov TA; Serkebaeva YM; Kulichevskaya IS; Liesack W; Dedysh SN ISME J; 2008 May; 2(5):551-60. PubMed ID: 18309356 [TBL] [Abstract][Full Text] [Related]
39. Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar. Park JH; Lee SJ; Lee ME; Chung JW Environ Sci Process Impacts; 2016 Apr; 18(4):514-20. PubMed ID: 27055368 [TBL] [Abstract][Full Text] [Related]
40. Temporal dynamics in the taxonomic and functional profile of the Sphagnum-associated fungi (mycobiomes) in a Sphagnum farming field site in Northwestern Germany. Borg Dahl M; Krebs M; Unterseher M; Urich T; Gaudig G FEMS Microbiol Ecol; 2020 Oct; 96(11):. PubMed ID: 33016319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]