BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32588640)

  • 1. Characterization of Synthetic Hydroxyapatite Fibers Using High-Resolution, Polarized Raman Spectroscopy.
    Shah FA
    Appl Spectrosc; 2021 Apr; 75(4):475-479. PubMed ID: 32588640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites.
    Penel G; Leroy G; Rey C; Bres E
    Calcif Tissue Int; 1998 Dec; 63(6):475-81. PubMed ID: 9817941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Synthesis and characterization of CO-3(2-) doping nano-hydroxyapatite].
    Liao JG; Li YQ; Duan XZ; Liu Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3011-4. PubMed ID: 25752048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards refining Raman spectroscopy-based assessment of bone composition.
    Shah FA
    Sci Rep; 2020 Oct; 10(1):16662. PubMed ID: 33028904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallinity and compositional changes in carbonated apatites: Evidence from
    McElderry JD; Zhu P; Mroue KH; Xu J; Pavan B; Fang M; Zhao G; McNerny E; Kohn DH; Franceschi RT; Holl MM; Tecklenburg MM; Ramamoorthy A; Morris MD
    J Solid State Chem; 2013 Oct; 206():. PubMed ID: 24273344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the particle size on the fundamental vibrations of the [CO3(2-)] anion in calcite.
    Kristova P; Hopkinson LJ; Rutt KJ
    J Phys Chem A; 2015 May; 119(20):4891-7. PubMed ID: 25905724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman and infrared spectroscopic characterization of the phosphate mineral paravauxite Fe2+Al2(PO4)2(OH)2.8H2O.
    Frost RL; Scholz R; Lópes A; Xi Y; Gobac ZŽ; Horta LF
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():491-6. PubMed ID: 23973599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic-Osteocyte Lacunae on Trabecular Bone Surface.
    Shah FA; Zanghellini E; Matic A; Thomsen P; Palmquist A
    Calcif Tissue Int; 2016 Feb; 98(2):193-205. PubMed ID: 26472430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled substitution of type A and B carbonate in sodium-bearing apatite.
    Fleet ME; Liu X
    Biomaterials; 2007 Feb; 28(6):916-26. PubMed ID: 17123599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A vibrational spectroscopic study of the phosphate mineral whiteite CaMn(++)Mg2Al2(PO4)4(OH)2·8(H2O).
    Frost RL; Scholz R; López A; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():243-8. PubMed ID: 24491665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR microspectroscopic analysis of human osteonal bone.
    Paschalis EP; DiCarlo E; Betts F; Sherman P; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 1996 Dec; 59(6):480-7. PubMed ID: 8939775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A vibrational spectroscopic study of the phosphate mineral minyulite KAl2(OH,F)(PO4)2⋅4(H2O) and in comparison with wardite.
    Frost RL; López A; Xi Y; Cardoso LH; Scholz R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():34-9. PubMed ID: 24457936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational spectroscopy of the phosphate mineral kovdorskite-Mg2PO4(OH)·3H2O.
    Frost RL; López A; Xi Y; Granja A; Scholz R; Lima RM
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():309-15. PubMed ID: 23778171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.
    Penel G; Delfosse C; Descamps M; Leroy G
    Bone; 2005 May; 36(5):893-901. PubMed ID: 15814305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular structure of the phosphate mineral beraunite Fe(2+)Fe5(3+)(PO4)4(OH)5⋅4H2O--a vibrational spectroscopic study.
    Frost RL; López A; Scholz R; Xi Y; Lana C
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():408-12. PubMed ID: 24682056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared microscopic imaging of bone: spatial distribution of CO3(2-).
    Ou-Yang H; Paschalis EP; Mayo WE; Boskey AL; Mendelsohn R
    J Bone Miner Res; 2001 May; 16(5):893-900. PubMed ID: 11341334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A vibrational spectroscopic study of the anhydrous phosphate mineral sidorenkite Na3Mn(PO4)(CO3).
    Frost RL; López A; Scholz R; Belotti FM; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():930-4. PubMed ID: 25282022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Line Intensities in the nu1 + nu3 Band of SO2 by Applying a Tunable Diode Laser Spectrometer.
    Sumpf B
    J Mol Spectrosc; 1997 Dec; 186(2):249-55. PubMed ID: 9446764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.