These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 32589124)
1. The rough colony morphotype of Nishimura T; Shimoda M; Tamizu E; Uno S; Uwamino Y; Kashimura S; Yano I; Hasegawa N J Med Microbiol; 2020 Jul; 69(7):1020-1033. PubMed ID: 32589124 [No Abstract] [Full Text] [Related]
2. Elevated mitogen-activated protein kinase signalling and increased macrophage activation in cells infected with a glycopeptidolipid-deficient Mycobacterium avium. Bhatnagar S; Schorey JS Cell Microbiol; 2006 Jan; 8(1):85-96. PubMed ID: 16367868 [TBL] [Abstract][Full Text] [Related]
3. Activation of the mitogen-activated protein kinase signaling pathway is instrumental in determining the ability of Mycobacterium avium to grow in murine macrophages. Tse HM; Josephy SI; Chan ED; Fouts D; Cooper AM J Immunol; 2002 Jan; 168(2):825-33. PubMed ID: 11777978 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the virulence of Mycobacterium avium complex (MAC) isolates in mice. Pedrosa J; Flórido M; Kunze ZM; Castro AG; Portaels F; McFadden J; Silva MT; Appelberg R Clin Exp Immunol; 1994 Nov; 98(2):210-6. PubMed ID: 7955524 [TBL] [Abstract][Full Text] [Related]
5. Change in colony morphology influences the virulence as well as the biochemical properties of the Mycobacterium avium complex. Kansal RG; Gomez-Flores R; Mehta RT Microb Pathog; 1998 Oct; 25(4):203-14. PubMed ID: 9817824 [TBL] [Abstract][Full Text] [Related]
6. Characterization of virulence, colony morphotype and the glycopeptidolipid of Mycobacterium avium strain 104. Torrelles JB; Ellis D; Osborne T; Hoefer A; Orme IM; Chatterjee D; Brennan PJ; Cooper AM Tuberculosis (Edinb); 2002; 82(6):293-300. PubMed ID: 12623272 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the virulence for mice of Mycobacterium avium and Mycobacterium intracellulare identified by DNA probe test. Tomioka H; Saito H; Sato K; Dawson DJ Microbiol Immunol; 1993; 37(4):259-64. PubMed ID: 8350768 [TBL] [Abstract][Full Text] [Related]
9. Capsular arabinomannans from Mycobacterium avium with morphotype-specific structural differences but identical biological activity. Wittkowski M; Mittelstädt J; Brandau S; Reiling N; Lindner B; Torrelles J; Brennan PJ; Holst O J Biol Chem; 2007 Jun; 282(26):19103-12. PubMed ID: 17459879 [TBL] [Abstract][Full Text] [Related]
10. Colonial morphotype as a determinant of cytokine expression by human monocytes infected with Mycobacterium avium. Shiratsuchi H; Toossi Z; Mettler MA; Ellner JJ J Immunol; 1993 Apr; 150(7):2945-54. PubMed ID: 8454866 [TBL] [Abstract][Full Text] [Related]
12. Effects of benzoxazinorifamycin KRM-1648 on cytokine production at sites of Mycobacterium avium complex infection induced in mice. Tomioka H; Sato K; Shimizu T; Sano C; Akaki T; Saito H; Fujii K; Hidaka T Antimicrob Agents Chemother; 1997 Feb; 41(2):357-62. PubMed ID: 9021192 [TBL] [Abstract][Full Text] [Related]
13. Comparison of virulence of Mycobacterium avium complex (MAC) strains isolated from AIDS and non-AIDS patients. Reddy VM; Parikh K; Luna-Herrera J; Falkinham JO; Brown S; Gangadharam PR Microb Pathog; 1994 Feb; 16(2):121-30. PubMed ID: 8047000 [TBL] [Abstract][Full Text] [Related]
14. Induction of IL-1 beta, IL-6, TNF-alpha, GM-CSF and G-CSF in human macrophages by smooth transparent and smooth opaque colonial variants of Mycobacterium avium. Fattorini L; Xiao Y; Li B; Santoro C; Ippoliti F; Orefici G J Med Microbiol; 1994 Feb; 40(2):129-33. PubMed ID: 7508978 [TBL] [Abstract][Full Text] [Related]
15. Effector molecules of the host defence mechanism against Mycobacterium avium complex: the evidence showing that reactive oxygen intermediates, reactive nitrogen intermediates, and free fatty acids each alone are not decisive in expression of macrophage antimicrobial activity against the parasites. Tomioka H; Sato K; Sano C; Akaki T; Shimizu T; Kajitani H; Saito H Clin Exp Immunol; 1997 Aug; 109(2):248-54. PubMed ID: 9276519 [TBL] [Abstract][Full Text] [Related]
16. Tumour necrosis factor-alpha (TNF-alpha) in the host resistance to mycobacteria of distinct virulence. Appelberg R; Sarmento A; Castro AG Clin Exp Immunol; 1995 Aug; 101(2):308-13. PubMed ID: 7648714 [TBL] [Abstract][Full Text] [Related]
17. Macrophage chemiluminescence induced by interaction with transparent and opaque colonial variants of Mycobacterium intracellulare. Tomioka H; Saito H J Gen Microbiol; 1993 Dec; 139(12):3011-5. PubMed ID: 8126427 [TBL] [Abstract][Full Text] [Related]
18. Mycobacterium avium subsp. hominissuis effector MAVA5_06970 promotes rapid apoptosis in secondary-infected macrophages during cell-to-cell spread. Danelishvili L; Rojony R; Carson KL; Palmer AL; Rose SJ; Bermudez LE Virulence; 2018; 9(1):1287-1300. PubMed ID: 30134761 [TBL] [Abstract][Full Text] [Related]
19. The white morphotype of Mycobacterium avium-intracellulare is common in infected humans and virulent in infection models. Mukherjee S; Petrofsky M; Yaraei K; Bermudez LE; Cangelosi GA J Infect Dis; 2001 Dec; 184(11):1480-4. PubMed ID: 11709794 [TBL] [Abstract][Full Text] [Related]
20. Colony morphotypes on Congo red agar segregate along species and drug susceptibility lines in the Mycobacterium avium-intracellulare complex. Cangelosi GA; Palermo CO; Laurent JP; Hamlin AM; Brabant WH Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1317-1324. PubMed ID: 10411258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]